Physical Activity and Sedentary Behaviour in Obstructive Airway

Diseases.

Laura Cordova Rivera

BPhty (Hons)

A Thesis Submitted for the

Degree of Doctor of Philosophy – Medicine

September 2018

School of Medicine and Public Health

The University of Newcastle

This Research was supported by an Australian Government Research Training Program (RTP) Scholarship I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

25th September 2018

Date

Laura Cordova Rivera

I hereby certify that this thesis is in the form of a series of papers. I have included as part of the thesis a written declaration from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers It's funny to think that a few months/years ago I was so looking forward to be at the time when I finally could be writing these acknowledgements. Now that the time has finally come, I wish I had another year to keep enjoying the experience of being a researcher and doing a PhD. In this journey, I have had the fortune to have the support of my supervisors Professor Vanessa McDonald, Professor Peter Gibson, and Doctor Paul Gardiner, who have guided me through this process and helped me to discover my love for research.

Vanessa - I cannot thank you enough for believing in me and giving me the opportunity to do my studies under your supervision. Sending you that email a few years ago has been one of the very good decisions I have made in my life. I have learnt so much in this process, and you have always been an educator willing to give advice and guidance. Your dedication, honesty, creativity and critical thinking are and will continue to be an inspiration in my career. I also appreciate your friendship, and the support you gave me during difficult moments. I really hope to see you again in the future, and I wish you the best in your Spanish learning process[©]. Peter – (*well, what can I say to Peter Gibson that hasn't been said already!*) Thanks so much for all your support, your advice and the ideas that developed from our monthly meetings. I will treasure those meetings as instances in which I felt challenged so many times, but where I also had the opportunity to develop my capacity to search for the "why factor" of my research. And even better, the meetings were also (*mostly*) fun! It was such an honour to be your student. Paul – I am also very grateful for your support and for the input you gave me during my PhD, not only in your area of expertise, but also in epidemiology and in other public health subjects. Thanks to that, I finally understood that statistical significance was not something that *you lost in the bus.* You were a very thorough and creative reviewer of my articles, and in seeing the results, I appreciate that.

I would like to thank the Priority Research Centre (PRC) for Healthy Lungs and the University of Newcastle for awarding me a PRC-PhD scholarship, which made possible the completion of my studies. I am also grateful for their support, as well as the support provided by the NHMRC Centre of Excellence in Severe Asthma, to sponsor my attendance to several conferences, which enormously enriched my PhD experience.

I would really like to thank the current and old clinical team from the "McDonald group", especially to Kelly Steel, Amber Smith, Gabrielle LeBrocq, Penny Baines, Michelle Rostas and Netsi Negewo. You were the best group buddies in this process, and I am very thankful for the effort you put in collecting the physical activity data, and in the recruitment process (and sorry for the overloading at the end C). I am also very grateful for the clinical support you provide me when needed, and for sharing your clinical knowledge with me. You make a great group. Kellyleli! Thanks for being so patient during my clinical skills learning process. You were a great teacher. Amber - I really appreciate your efforts helping me to get the data ready for my third paper. Also thanks for organising the best farewell party in the world. Cat - Thanks for your friendship and for your clinical help when I needed it. I will miss you girls! I would also like to thank people from the lab team, especially to Lakshitha Gunawardhana and Heather McDonald for processing the samples. To Sarah Hiles - thanks so much for all the statistical advice shared with me. You were always generous and patient, and I have to say this...you are my Stata Idol! To Vanessa Clark - thanks so much for the advice provided when needed (including Dressy Bessy, of course). I appreciate your willingness to help me when I was troubled by decisions. To Kim, Paola (thanks for reading my thesis!), Ginger, Steven, Eleanor, Tash, and Michelle - thanks for your support and for being a great team! To Heather Powell - thanks for your statistical advise for my first paper. To Deborah Hall - thank for your administrative support.

My gratitude and admiration also go to all the participants who generously donated their time to participate in the studies included as part of this Thesis. I think that one of the things that makes Australia a great country is the willingness of its people to volunteer in their communities for a common good. These studies have been an example of this, and it has been a rewarding experience to be part of it.

A mis padres – (les escribire en espanol porque o si no no se enteraran de nada). Me hubiese gustado mucho haber compartido mas durante este proceso con ustedes, y la verdad que me hicieron mucha falta. Pero tambien fueron una gran motivacion para terminar mis estudios, y me sirvieron de inspiracion muchas veces. Muchas gracias por todas las ensenanzas entregadas durante mi juventud. En gran parte, este logro tambien es de ustedes por darme las bases de mi educacion, y por inyectarme el bichito de viajar y conocer el mundo. Gracias por darme las herramientas que me permitieron convertirme en la persona que soy. A mis hermanos, Moises y Roberto - los quiero mucho.

Finally, to my husband and friend – Marti Lloret Cabot. Mi amor, you were always (even from the beginning ;) a source of inspiration. Thanks so much for your support, and for your efforts to be with me despite the (way too) long distance. You have always encouraged me to be better and to help me in this process. Thanks very much for believing in me, and for your encouragement while things didn't look too good. And you were right in the end... I was doing a good job as a PhD candidate \bigcirc .

- Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. *The Journal of Allergy and Clinical Immunology: In Practice* 2018 Nov Dec; 6(6):1968-1981 (Chapter 1)
- Cordova-Rivera L, Gibson PG, Gardiner PA, Powel H, McDonald VM. Physical activity and exercise capacity in severe asthma: Key clinical associations. *The Journal of Allergy and Clinical Immunology: In Practice* 2018 May - Jun; 6(3):814-822 (Chapter 2)
- **Cordova-Rivera L**, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. *Respirology* 2018 Nov doi: 10.1111/resp.13428. [Epub ahead of print] (Chapter 3)

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to defining the topic of literature review, gathering and evaluating source materials, critically analysing and synthesising information from published sources and manuscript preparation/writing to the publication entitled:

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. *The Journal of Allergy and Clinical Immunology: In Practice* 2018

Signature:

Full Name of Co-Author: Prof Vanessa McDonald

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to defining the topic of literature review, gathering and evaluating source materials, critically analysing and synthesising information from published sources and manuscript preparation/writing to the publication entitled:

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. *The Journal of Allergy and Clinical Immunology: In Practice* 2018

Signature:

Full Name of Co-Author: Prof Peter Gibson

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to defining the topic of literature review, gathering and evaluating source materials, critically analysing and synthesising information from published sources and manuscript preparation/writing to the publications entitled:

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. *The Journal of Allergy and Clinical Immunology: In Practice* 2018

Signature:

Full Name of Co-Author: Dr Paul Gardiner

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to the study design, patient recruitment, data acquisition, data analysis and interpretation and manuscript preparation/writing for the papers entitled:

- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Powel H, McDonald VM. Physical activity and exercise capacity in severe asthma: Key clinical associations. *The Journal of Allergy and Clinical Immunology: In Practice* 2017.
- Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. *Respirology 2018.*
- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Hiles SA, McDonald VM. Extrapulmonary associations of health status in severe asthma and bronchiectasis: comorbidities and functional outcomes. (*Currently under peer-review*)

Signature:

Full Name of Co-Author: Prof Vanessa McDonald

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to the study design, patient recruitment, data acquisition, data analysis and interpretation and manuscript preparation/writing to the papers entitled:

- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Powel H, McDonald VM. Physical activity and exercise capacity in severe asthma: Key clinical associations. *The Journal of Allergy and Clinical Immunology: In Practice* 2017.
- Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. *Respirology 2018*.
- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Hiles SA, McDonald VM. Extrapulmonary associations of health status in severe asthma and bronchiectasis: comorbidities and functional outcomes. (*Currently under peer-review*).

Signature:

Full Name of Co-Author: Prof Peter Gibson

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to the study design, patient recruitment, data acquisition, data analysis and interpretation and manuscript preparation/writing to the papers entitled:

- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Powel H, McDonald VM. Physical activity and exercise capacity in severe asthma: Key clinical associations. *The Journal of Allergy and Clinical Immunology: In Practice* 2017.
- Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. *Respirology 2018.*
- **Cordova-Rivera L**, Gibson PG, Gardiner PA, Hiles SA, McDonald VM. Extrapulmonary associations of health status in severe asthma and bronchiectasis: comorbidities and functional outcomes. (*Currently under peer-review*)

Signature:

Full Name of Co-Author: Dr. Paul Gardiner

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to the study design, patient recruitment, data acquisition, data analysis and interpretation and manuscript preparation/writing to the paper entitled:

• **Cordova-Rivera L**, Gibson PG, Gardiner PA, Powel H, McDonald VM. Physical activity and exercise capacity in severe asthma: Key clinical associations. *The Journal of Allergy and Clinical Immunology: In Practice* 2017.

Signature:

Full Name of Co-Author: Ms Heather Powell

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

By signing below, I confirm that Research Higher Degree candidate, Laura Cordova Rivera, provided substantial intellectual input and contributions to the study design, patient recruitment, data acquisition, data analysis and interpretation and manuscript preparation/writing to the paper entitled:

• **Cordova-Rivera L**, Gibson PG, Gardiner PA, Hiles SA, McDonald VM. Extrapulmonary associations of health status in severe asthma and bronchiectasis: comorbidities and functional outcomes. (*Currently under peer-review*)

Signature:

Full Name of Co-Author: Dr. Sarah Ashley Hiles

Signature:

Full name of Assistant Dean Research Training: Prof Derek Laver

CONFERENCE PRESENTATIONS & PUBLICATIONS FROM THIS THESIS

Thoracic Society of Australia and New Zealand (TSANZ) Annual Scientific Meeting 2017, 24

- 29 March 2017, Canberra, Australia.

Oral presentation by Laura Cordova Rivera

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Physical inactivity and sedentary time in severe asthma *Respirology* 2017; 22 (Suppl 2) 18-100.

27th European Respiratory Society (ERS) Annual Congress 2017, 9-13 September 2017, Milan, Italy.

Poster presentation by Laura Cordova Rivera

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM.PG. Physical inactivity and sedentary time in severe asthma: prevalence and associations ERJ 2017; 50: PA PA775.

Thoracic Society of Australia and New Zealand (TSANZ) Annual Scientific Meeting 2018, 24 - 27 March 2018, Adelaide, Australia.

Oral presentation by Laura Cordova Rivera

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Determinants of physical activity in obstructive airway diseases. *Respirology* 2018 The International Society of Behavioral Nutrition and Physical Activity (ISBNPA) 17th annual meeting 2018, 3 - 6 June 2018, Hong Kong.

Oral presentation by Laura Cordova Rivera

Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Determinants of physical activity in obstructive airway diseases.

STATEMENT (DF ORIGINALITYII
ACKNOWLED	GEMENTSIV
PUBLICATION	IS INCLUDED AS PART OF THIS THESISVII
STATEMENT (OF CONTRIBUTION OF OTHERSVIII
CONFERENCE	PRESENTATIONS & PUBLICATIONS FROM THIS THESISXVI
TABLE OF COI	NTENTS1
TABLE OF TAE	BLES6
TABLE OF FIG	URES
LIST OF ABBR	EVIATIONS AND ACRONYMS9
ABSTRACT AN	ND SYNPOSIS
1. CHAPTER	1: OBSTRUCTIVE AIRWAY DISEASES AND ACTIVITY BEHAVIOURS: BACKGROUND
Part one	
1.1. Obs	tructive Airway Diseases14
1.2. Asth	nma and Severe Asthma17
1.2.1.	Definition, prevalence, and disease burden
1.2.2.	Pathogenesis of severe asthma25
1.2.3.	Diagnosis and classification
1.2.4.	Treatment
1.3. Chro	onic Obstructive Pulmonary Disease (COPD)
1.3.1.	Definition, prevalence and disease burden
1.3.2.	Pathogenesis of COPD
1.3.3.	Diagnosis and classification
1.3.4.	Treatment
1.4. Bro	nchiectasis

TABLE OF CONTENTS

1.4.3	1.	Definition, prevalence and disease burden 46
1.4.2	2.	Pathogenesis of bronchiectasis 49
1.4.3	3.	Diagnosis and classification50
1.4.4	4.	Treatment
1.5.	Sum	nmary Part 1: OAD section53
1.6.	ls pl	hysical activity a treatable trait in OAD?54
Part Tv	NO	
1.7.	Acti	ivity behaviours
1.7.3	1.	Physical activity: definition, health impact, and characterisation on general
рор	ulatio	ons 59
1.7.2	2.	Sedentary behaviour: definition, health impact, and characterisation on
gene	eral p	populations
1.7.3	3.	Measurement of activity behaviours71
1.7.4	4.	Characterisation of activity behaviours in obstructive airway disease
рор	ulatio	ons: what is the evidence?
1.7.	5.	Physical activity and sedentary behaviour in COPD
1.7.0	6.	Physical activity and sedentary time in bronchiectasis
1.8.	Sum	nmary Part 2: movement behaviours section
1.9.	Mot	tivation for the present thesis91
1.10.	А	ims and Hypotheses:
1.11.	S	tudy design and methods of primary data studies
2. Сна	PTER .	2: Physical activity and Sedentary Time in Adults with Asthma
Overvi	ew o	of this Chapter 100
2.1.	Abs	tract
2.2.	Intr	oduction 102

	2.3.	Met	thods	103
	2.3	.1.	Literature search	103
	2.3	.2.	Analysis	104
	2.4.	Res	ults	104
	2.4	.1.	Prevalence of physical activity	111
	2.4	.2.	Prevalence of sedentary time	118
	2.4	.3.	Associations between physical activity or sedentary time and asthr	na health
	out	come	S	118
	2.5.	Disc	cussion	124
	2.5	.1.	Strength and limitations	129
	2.6.	Con	clusions	130
	2 7	Sun	plementary information	130
	2.7.	Sup		
3.	2.7. Сня	APTER :	3: P HYSICAL ACTIVITY AND SEDENTARY TIME IN ADULTS WITH SEVERE ASTHMA .	135
3.	2.7. Сня Overv	APTER :	3: Physical Activity and Sedentary Time in Adults with Severe Asthma . f this Chapter	135 136
3.	2.7. <i>Сн</i> Overv 3.1.	APTER S view o Abs	3: Physical Activity and Sedentary Time in Adults with Severe Asthma . f this Chapter	1 35 136 137
3.	2.7. Сни Overv 3.1. 3.2.	APTER : View o Abs	3: Physical Activity and Sedentary Time in Adults with Severe Astнма . f this Chapter tract oduction	135 136 137 139
3.	2.7. CH Overv 3.1. 3.2. 3.3.	APTER 3 View o Abs Intro Met	3: Physical Activity and Sedentary Time in Adults with Severe Astнма . f this Chapter tract oduction	135 136 137 139 140
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3.	APTER : View o Abs Intro Met .1.	<i>3: Physical Activity and Sedentary Time in Adults with Severe Asthma</i> . f this Chapter tract oduction thods Participant selection	135 136 137 139 140 140
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3. 3.3	APTER 3 View o Abs Intro Met .1.	3: Physical Activity and Sedentary Time in Adults with Severe Asthma if this Chapter tract oduction thods Participant selection Procedures	135 136 137 139 140 140 142
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3 3.3 3.3 3.3	APTER : view o Abs Intro Met .1. .2. .3.	<i>B: Physical Activity and Sedentary Time in Adults with Severe Asthma</i> . f this Chapter tract	135 136 137 139 140 142 142 144
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3. 3.3 3.3 3.3 3.4.	APTER : View o Abs Intro Met .1. .2. .3. Res	<i>3: Physical Activity and Sedentary Time in Adults with Severe Asthma</i> . If this Chapter	135 136 137 139 140 140 142 144 145
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3. 3.3 3.3 3.4. 3.4. 3.4	APTER 3 View o Abs Intro Met .1. .2. .3. Rest	3: PHYSICAL ACTIVITY AND SEDENTARY TIME IN ADULTS WITH SEVERE ASTHMA . f this Chapter	135 136 137 139 140 140 142 144 145 145
3.	2.7. CH Overv 3.1. 3.2. 3.3. 3.3. 3.3 3.4. 3.4. 3.4. 3.4. 3.4	APTER 3 View o Abs Intro Met .1. .2. .3. Resu .1.	3: Physical Activity and Sedentary Time in Adults with Severe Asthma . of this Chapter	135 136 137 139 140 140 142 144 145 145 a and the

3.4.3	3. Associations of physical activity and sedentary time with clinical outcome	s and
biol	logical markers in participants with severe asthma	. 150
3.5.	Discussion	. 155
3.6.	Conclusions	. 160
4. Сна	PTER 4: PHYSICAL ACTIVITY IN OBSTRUCTIVE AIRWAY DISEASES	. 162
Overvi	iew of this Chapter	. 163
4.1.	Abstract:	. 164
4.2.	Introduction	. 165
4.3.	Methods	. 166
4.3.	1. Measurements	. 167
4.3.2	2. Physical activity	. 168
4.3.3	3. Statistical Analysis	. 168
4.4.	Results	. 169
4.4.3	1. Characterisation of physical activity	. 173
4.4.2	2. Characteristics associated with physical activity in OAD	. 174
4.5.	Discussion	. 178
4.6.	Conclusion	. 181
4.7.	Supplementary information	. 182
5. Сна	PTER 5: EXTRAPULMONARY DISEASE CHARACTERISTICS AND HEALTH STATUS IN SEVERE AS	тнма
AND BRON	NCHIECTASIS	. 190
Overvi	iew of this Chapter	. 191
5.1.	Abstract	. 192
5.2.	Introduction	. 193
5.3.	Methods	. 195
5.3.3	1. Procedures	. 196

5.3	.2. Statistical analysis	197
5.4.	Results	199
5.4	.1. Associations of HRQoL in Severe Asthma and Bronchiectasis	202
5.5.	Discussion	208
5.6.	Conclusion	213
5.7.	Supplementary information	215
6. Сни	APTER 6: DISCUSSION	217
6.1.	Major findings and discussion	217
6.2.	Limitations of this Thesis	227
6.3.	Future directions	228
6.4.	Conclusions	230
7. REF	ERENCES:	231
APPEND	DIX I: CHAPTER 2 - PUBLISHED ARTICLE	260
APPEND	DIX II: CHAPTER 2 – SUMMARY FROM AAAAI WEBSITE	276
APPEND	DIX III: CHAPTER 3 – PUBLISHED ARTICLE	277
APPEND	DIX IV: CHAPTER 3 – SUMMARY FROM AAAAI WEBSITE	286
APPEND	DIX V: CHAPTER 3 – ANALYSIS OF MOVEMENT BEHAVIOURS	287
Meas	urement and analysis of physical activity and sedentary time in the art	icle "Physical
activi	ty exercise capacity.in severe asthma: Key clinical association"	287
APPEND	DIX VI: CHAPTER 3 - EDITORIAL	292
APPEND	DIX VII: CHAPTER 4 – ACCEPTANCE LETTER	294
APPEND	DIX VIII: CASE RECORD FILE FOR SEVERE ASTHMA PARTICIPANTS	303
APPEND	DIX IX: CASE RECORD FILE FOR BRONCHIECTASIS AND HEALTHY CONTROL PARTICIPA	ANTS 354
APPEND	DIX X: PHYSICAL ACTIVITY DIARY	400

TABLE OF TABLES

TABLE 1-1: Severe ASTHMA CHECKLIST: FOR DIAGNOSIS AND CLASSIFICATION. 32
TABLE 1-2: CLASSIFICATION OF SEVERITY OF AIRFLOW LIMITATION IN COPD. 41
TABLE 1-3: PHARMACOLOGICAL APPROACH ACCORDING TO ABCD ASSESSMENT. 44
TABLE 1-4: PREVALENCE OF COMMON AETIOLOGICAL CAUSES OF BRONCHIECTASIS. 47
TABLE 1-5: EXAMPLES OF METS EQUIVALENTS OF LIGHT, MODERATE AND VIGOROUS PHYSICAL ACTIVITY.
TABLE 1-6: CURRENT RECOMMENDATIONS OF PHYSICAL ACTIVITY FOR ADULTS. 62
TABLE 1-7: TERMINOLOGIES AND DEFINITIONS PROPOSED BY THE SBRN. 67
TABLE 1-8: ACTIVITY SPECTRUMS AND SEDENTARY TIME BASED ON FREEDSON'S 1998 CUT-POINT. 77
TABLE 1-9: OVERVIEW OF THE DESIGN AND METHODS OF PAPERS INCLUDED AS PART OF THIS THESIS96
TABLE 2-1: SEARCH STRATEGY. 104
TABLE 2-2: DEMOGRAPHIC CHARACTERISTICS OF STUDIES INCLUDED. 107
TABLE 2-3: PHYSICAL ACTIVITY MEASUREMENTS IN STUDIES WITH A CONTROL GROUP. 112
TABLE 2-4: ASSOCIATION BETWEEN PHYSICAL ACTIVITY OR SEDENTARY TIME WITH ASTHMA OUTCOMES.
TABLE 2-5: ACTIVITY OUTCOMES FROM ACTIVITY MONITORS. 123
TABLE 3-1: DEMOGRAPHICS AND CLINICAL CHARACTERISTICS
TABLE 3-2: ASSOCIATION OF PHYSICAL ACTIVITY AND SEDENTARY TIME WITH EXERCISE CAPACITY AS 6MWD.
TABLE 3-3: ASSOCIATION OF PHYSICAL ACTIVITY AND ST WITH CLINICAL OUTCOMES
TABLE 3-4: ASSOCIATION OF PHYSICAL ACTIVITY AND ST WITH AIRWAY INFLAMMATION. 154
TABLE 3-5: Association of physical activity and sedentary time with inflammatory biomarkers.

TABLE 4-1: DEMOGRAPHICS AND CLINICAL CHARACTERISTICS OF PARTICIPANTS. 171
TABLE 4-2: CLINICAL AND BIOLOGICAL CHARACTERISTICS. 172
TABLE 4-3: ASSOCIATIONS OF PHYSICAL ACTIVITY IN OBSTRUCTIVE AIRWAYS DISEASES. 175
TABLE 4-4: REGRESSION MODELS OF ASSOCIATIONS OF DISEASE CHARACTERISTICS WITH STEPS/DAY BY
DIAGNOSIS
TABLE 5-1: BASELINE PARTICIPANTS CHARACTERISTICS. 200
TABLE 5-2: ADJUSTED SIMPLE LINEAR REGRESSION MODELS (MODELS A) OF EACH EXTRAPULMONARY
CHARACTERISTIC, ADJUSTED FOR AGE, SEX AND BMI, AS A DETERMINANT OF SGRQ IN SEVERE
ASTHMA AND BRONCHIECTASIS 203
TABLE 5-3: MULTIVARIABLE REGRESSION MODEL OF EXTRAPULMONARY DETERMINANTS OF SGRQ IN THE
COMBINED DISEASE POPULATIONS (MODEL B , ALL CHARACTERISTICS AND CONFOUNDERS IN SINGLE
REGRESSION MODEL)
TABLE 5-4: MULTIVARIABLE REGRESSION MODEL (MODEL B) OF EXTRAPULMONARY DETERMINANTS OF
DOMAINS OF SGRQ

TABLE OF FIGURES

FIGURE 1-A: WORLDWIDE PREVALENCE OF CLINICAL ASTHMA
FIGURE 1-B: PICTOGRAM OF SEVERE ASTHMA PREVALENCE ACCORDING TO HEKKING ET AL. ³⁷
FIGURE 1-C: STEP-WISE APPROACH TO CONTROL SYMPTOMS AND MINIMISE FUTURE RISK
FIGURE 1-D: CHOICE OF TREATMENT ACCORDING TO INFLAMMATORY PHENOTYPES IN SEVERE ASTHMA. 35
FIGURE 1-E: THE REDEFINED ABCD ASSESSMENT TOOL
FIGURE 1-F: THE VICIOUS CIRCLE OF BRONCHIECTASIS
FIGURE 1-G: THE CARE APPROACH FOR ASSESSMENT AND TREATMENT OF CHRONIC AIRWAY DISEASES 55
FIGURE 1-H: CONCEPTUAL MODEL OF MOVEMENT AND NON-MOVEMENT BEHAVIOURS PROPOSED BY THE
SBRN
FIGURE 1-I: THE DYSPNOEA INACTIVITY DOWNWARD SPIRAL IN COPD
FIGURE 2-A: PRISMA FLOW DIAGRAM LITERATURE SEARCH
FIGURE 2-B: FOREST PLOT OF STANDARDISED MEAN (95% CONFIDENCE INTERVALS) FOR STEPS/DAY 117
FIGURE 3-A: SEDENTARY TIME (A), LIGHT PA (B), MODERATE AND VIGOROUS PA (C) AND STEPS/DAY (D) IN
SEVERE ASTHMA AND AGE- AND SEX-MATCHED CONTROLS
FIGURE 3-B: RELATIONSHIP BETWEEN PHYSICAL ACTIVITY AND 6MWD
FIGURE 4-A: PHYSICAL ACTIVITY COMPARISON FOR STEPS/DAY (A) AND MVPA (B)
FIGURE 4-B: PEARSON'S CORRELATION OF PHYSICAL ACTIVITY (STEPS/DAY) WITH 6MWT (A); FEV1%
PREDICTED (B); HS-CRP (C); AND SPUTUM EOSINOPHILS% (D)
FIGURE 5-A: DIFFERENCES IN THE PREDICTIVE VALUE OF SGRQ (MEAN, 95% CONFIDENCE INTERVAL) BASED
ON MODELS C-1 IN THE COMBINED DISEASE GROUPS
FIGURE 5-B: COEFFICIENTS (95%CI) FROM THE MULTIVARIABLE FULL MODEL OF PREDICTORS OF SGRQ
USING CATEGORICAL INDEPENDENT VARIABLES (MODEL C-2)

ABPA: Allergic bronchopulmonary aspergillosis

ACQ: Asthma control questionnaire

ACT: Asthma control test

AFL: Airflow limitation

AOR: Adjusted odds ratio

ATS: American Thoracic Society

AQLQ: Asthma quality of life questionnaire

AusDiab: Australian Diabetes, Obesity and Lifestyle

BMI: Body mass index

CAT: COPD Assessment Test

CI: Confidence interval

COPD: Chronic obstructive pulmonary disease

CPM: Count per minutes

ERS: European Respiratory Society

FeNO: Fractional exhaled nitric oxide levels

FER: Forced expiratory ratio (FEV₁/ FVC)

FEV₁: Forced expiratory volume in the first second

FVC: Forced vital capacity

GINA: Global Initiative for Asthma

GOLD: Global Initiative for Chronic Obstructive Lung Disease

GORD: Gastroesophageal reflux disease

HRCT: High resolution computed tomography

HRQoL: Health-related quality of life

Hs-CRP: High sensitivity C-reactive protein

ICS: Inhaled corticosteroids

ICU: Intensive Care Unit

IFN γ: Interferon gamma

IgE: Immunoglobulin E

IL: Interleukin

ILC2: Innate lymphoid cells type 2

IQR: Interquartile range

Kcal: Kilocalories

Kg: Kilogram

Mcg: Micrograms

METs: Metabolic equivalent of task

MI: Millilitre

Mg: Milligram

mMRC: Medical Research Council

MVPA: Moderate and vigorous physical activity

NAEPP: National Asthma Education and Prevention Program

NHANES: National Health and Nutrition Examination Survey

LABA: Long-acting β 2-agonist

LAMA: Long-acting anti muscarinic antagonists

OAD: Obstructive airway diseases

OR: Odds ratio

OSA: obstructive sleep apnoea

PA: Physical activity

SABA: Short acting $\beta 2$ agonist

SD: Standard deviation

SGRQ: Saint George Respiratory Questionnaire

TGF-β: Transforming growth factor beta

T_H2: Type 2 helper

TNF-α: Tumour necrosis alpha

WHO: World Health Organisation

6MWD: six-minute walked distance

6MWT: six-minute walk test

Severe asthma, chronic obstructive pulmonary disease (COPD) and bronchiectasis are wellrecognised public health priorities by the World Health Organisation. People affected by these obstructive airway diseases (OAD) can suffer from considerable impairment in their quality of life due to the high burden of symptoms, exacerbations/lung attacks, and associated morbidity. All of these shared characteristics may also be detrimental to the person's ability to carry out activities of daily life, and are likely to lead to a vicious circle of physical activity reduction and deconditioning that will impair health-related quality of life.

In the general population, engaging in healthy levels of physical activity and reducing sedentary time have been regarded as highly beneficial in the prevention and treatment of several chronic diseases. In COPD, the impairment in these behaviours has been widely characterised and the importance of addressing them as part of disease management is recognised and accepted. However, in severe asthma and bronchiectasis, the characterisation of physical activity and sedentary time and the role of optimising these behaviours in disease management is largely under-researched.

In this Thesis, I characterise the degree of physical activity levels and sedentary time in a severe asthma population and examined whether the activity levels were comparable to that found in moderate to severe COPD and bronchiectasis. I also investigated the associations between physical activity levels, pulmonary and extrapulmonary characteristics, and health-related quality of life in these diseases. In my studies I found that compared to people without respiratory diseases, people with severe asthma engage in lower levels of moderate and vigorous intensity physical activity but similar levels of sedentary time. Better parameters in both behaviours were associated with better disease features, including exercise capacity, asthma control, and systemic inflammation. When comparing these results

with bronchiectasis and moderate to severe COPD populations, I found that lower levels of physical activity is a shared behavioural characteristic of people with OAD, albeit to a lesser degree in severe asthma and bronchiectasis. Shared pulmonary characteristics differed between diseases but nevertheless, exercise capacity and airflow limitation explain an important proportion of physical activity levels in OAD. Finally, I demonstrate that physical activity and other extrapulmonary characteristics including skeletal muscle strength and comorbidities, are statistically and clinically associated with health-related quality of life in bronchiectasis and severe asthma. The associations were stronger for the activity and impact domain and suggest that health-related quality of life in these diseases could be improved by addressing these extrapulmonary characteristics.

The findings of this Thesis have extended our knowledge of the characterisation of physical activity and sedentary time in severe asthma and bronchiectasis. Lower levels of physical activity are a prevalent feature in OAD populations and should be considered as a treatable extrapulmonary risk factor for the management of several disease outcomes not only in COPD, but also in severe asthma and bronchiectasis populations.

1. Chapter 1: Obstructive Airway Diseases and Activity Behaviours: Background

In *Part 1* of this chapter, I present a description of the diseases of severe asthma, COPD and bronchiectasis in terms of definitions, prevalence, burden of the disease, pathogenesis, diagnosis and treatment; followed by an overview of why the assessment of physical activity may be important in these diseases. In part 2 of this chapter, I will provide a thorough description of the movement behaviours physical activity and sedentary time, and the current state of research of the characterisation of these behaviours in COPD and bronchiectasis. A published literature review of these behaviours in asthma is included in Chapter 2.

Part one

1.1. Obstructive Airway Diseases

Definition of the term obstructive airway diseases

The term obstructive airway disease (OAD) is related to chronic respiratory conditions that affects the lower respiratory airway. The present thesis will focus on the common obstructive airway diseases of severe asthma, COPD and bronchiectasis.

The cardinal feature of OAD is airflow limitation during exhalation, which may or may not be reversible, either spontaneously or with the use of bronchodilator medication. In healthy people, after a maximal inhalation, more than 70% of the inspired air can be exhaled in the first second of exhalation. In the case of OAD, the air is trapped within the lungs, exhalation time is prolonged, and less than 70% of exhaled air can be exhaled in the first second. This results in an increased work of breathing and clinical symptoms of OAD. In clinical practice, spirometry is the most widely used and reproducible lung function test to diagnose and monitor OAD. The spirometry findings for OAD are defined as a forced expiratory volume in

the first second (FEV₁) below 80% of the predicted for matched healthy population (FEV₁ < 80%), and a FEV₁/forced vital capacity (FEV₁/FVC) ratio below $0.7^{1, 2}$. In asthma, especially in mild and moderate asthma, the airway obstruction is reversible either spontaneously or after therapy. Reversibility of these parameters is defined as an increase equal to or greater than 200ml and 12% in FEV₁, post administration of 200-400 mcg of short acting β 2 agonist (SABA), such as Salbutamol^{1, 3}.

In addition to the obstructive pulmonary findings, the aforementioned OAD share several clinical, functional and biological features. Symptoms such as cough, dyspnoea, sputum production, impaired exercise tolerance, and activity limitation are common characteristics among people with OAD⁴. Exacerbations are also common in these populations, impacting prognosis^{1, 2, 5} and potentially leading to a more pronounced lung function decline⁶⁻⁹. Biological characteristics such as systemic and airway inflammation are also common and impact comorbidities and treatment responsiveness¹⁰⁻¹³. These pulmonary and extrapulmonary characteristics have a high negative toll on the health status of people with OAD, affecting their physical, mental, emotional and social spheres, and therefore impairing their guality of life¹⁴⁻¹⁶.

Overlap among asthma, COPD and bronchiectasis has been widely described. Physiciandiagnosed concurrence of asthma and COPD has been estimated to range between 15 and 20% of patients¹⁷. This coexistence is associated with more frequent exacerbations and higher health care use, poorer quality of life, and an accelerated decline in lung function¹⁷⁻¹⁹. Bronchiectasis also frequently overlaps with severe asthma and COPD^{5, 20-24}, but its consequences are less well studied. A recent review found that the overlap with moderatesevere COPD ranges from 4% to 72%, and around 20% and 30% in severe or uncontrolled asthma¹⁵. Severe asthma, COPD and bronchiectasis are well recognised as public health priorities by the World Health Organization (WHO)²⁵. In Australia, asthma is one of the nine National Health Priority Areas since 1999²⁶. According to the Australian Burden of Disease Study 2011, respiratory conditions were ranked as the sixth leading contributor to total burden of disease and injury. COPD and asthma were the highest contributors for this burden (46% and 29% of the total burden of all respiratory conditions, respectively)²⁷. The definitions, pathogenesis, treatments, and burden of these diseases will be individually discussed through this chapter. Since these diseases share many common features, which may relate to the common defining characteristic of expiratory airflow limitation, in section 1.1.1.4 I will explore the proposed label-free approach to OAD management and focus on the question whether physical activity may be a treatable trait in OAD.

1.2. Asthma and Severe Asthma

1.2.1. Definition, prevalence, and disease burden.

Asthma definition

The Global Initiative for Asthma (GINA) has described asthma as "a heterogeneous disease, usually characterised by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation"¹.

Symptoms are often worse at night or on waking, and can be also triggered by exercise, exposure to irritants or allergens, weather changes or viral respiratory infections. These symptoms may vary in intensity, and they are usually reversible, either spontaneously or with the use of medication. Asthma is frequently associated with atopy, and can develop in both childhood and throughout the lifespan¹.

Asthma prevalence

It has been estimated that asthma affects as many as 334 million people worldwide²⁸. The incidence and prevalence of the disease varies between geographical regions (Figure 1-A). According to the World Health Survey 2002-2003, the highest prevalence of asthma symptoms in adults was observed in Australia, Northern and Western Europe and Brazil²⁹.

Figure 1-A: Worldwide prevalence of clinical asthma.

Extracted from (29): To et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012. Figure 1, page 6. <u>http://creativecommons.org/licenses/by/2.0</u>. No changes made

In Australia, it has been estimated that in 2015, 2.4 million people (9.9% of the population) had a diagnosis of asthma, and that by 2020 this figure will increase to three million people³⁰.

Asthma burden

Mortality and health-related costs

A study analysing the WHO Mortality Database (1993-2012 period) from 46 countries, reported that the mortality rates in the age group 5-34 years old have plateaued since 2006³¹. According to the Australian Bureau of Statistics, the number of deaths in Australia due to asthma as an underlying cause was 421 and 455 people in 2015 and 2016, respectively. About 76.1% of those deaths occurred in people aged 65 years and older. Additionally, it was reported that in 2016, 69% of those deaths occurred in females (312 asthma-related deaths in females compared to 143 in males). Females aged 75 and over were three times more

likely to die from asthma than their males counterparts³². The total government costs for 2016-2019 are projected to be \$4.0 billion³⁰.

Comorbidities

Asthma has been associated with the presence of several comorbidities, including mental health conditions (i.e. anxiety, depression), allergic rhinitis, rhinosinusitis, food allergies and anaphylaxis, gastro-oesophageal reflux disease (GORD), obstructive sleep apnoea (OSA) and obesity¹. The concurrent management of this comorbidities is recommended in order to avoid further disease burden, with the consequent impairment in quality of life¹.

Severe asthma definition

Severe asthma is a subset of difficult-to-treat asthma, which is defined as asthma that remains uncontrolled despite treatment with high-dose inhaled glucocorticoids or other controllers, or that requires such treatment in order to be controlled. Patients with "difficult-to-treat-asthma" are regarded as having severe asthma when issues such as inhalation technique, adherence to treatment, and management of conditions and triggers that may be impacting on asthma control have been addressed, and therefore have been excluded as a contributing factor of symptoms³³.

The current definition of severe asthma, proposed by The "International European Respiratory Society/American Thoracic Society (ERS/ATS) Taskforce on definition, evaluation and treatment of severe asthma" defines severe asthma as "asthma which requires treatment with guideline suggested medications for GINA steps 4–5 asthma (high dose inhaled corticosteroids (ICS) and long-acting β 2-agonist (LABA) or leukotriene modifier/theophylline) for the previous year or systemic corticosteroids for \geq 50% of the previous year to prevent it from becoming "uncontrolled" or which remains "uncontrolled"
despite this therapy"³³ Synonyms of this definition include severe refractory asthma or severe treatment-resistant (or refractory) asthma.

Asthma control relates to the extent to which certain characteristics are present in a patient. This includes an interrelationship between the presence, frequency and intensity of asthma symptoms, the presence (or risk of occurrence) of exacerbations that worsen prognosis, and/or the degree of lung function impairment³⁴.

The ERS/ATS taskforce guideline defines uncontrolled asthma with the presence of at least one of the following criteria³³:

- Poor symptom control: scores in the Asthma Control Questionnaire³⁵ (ACQ) or Asthma Control Test (ACT)³⁶ >1.5 or <20, respectively. Alternatively, scoring as "not well controlled" in the National Asthma Education and Prevention Program (NAEPP)/GINA guideline. An example of a person with score higher that 1.5 in the ACQ would be someone that during the past week was: woken up at night a few times by asthma symptoms, woken up in the morning with mild symptoms, was limited slightly in daily activities due to symptoms, experienced a little shortness of breath and wheeze, had on average a least 1-2 puffs of SABA each day³⁵.
- Frequent severe exacerbation: defined as having two or more bursts of systemic corticosteroids (>3 days each) in the last 12 months.
- A serious exacerbation: defined as having at least one hospitalisation, Intensive Care
 Unit (ICU) stay or mechanical ventilation in the previous year.
- Airflow limitation: defined as FEV₁ < 80% after appropriate bronchodilator withhold and in the presence of a FEV₁/FVC below normal parameters.
- Controlled asthma that worsens with the reduction of the high doses of inhaled corticosteroids or systemic corticosteroids (or additional biologics).

Severe asthma shares some common features with milder forms of the diseases, including symptoms (breathlessness, wheezing, cough, chest tightness), and daily variability of these symptoms (worse at night and early in the morning). However, in people with severe asthma symptoms may be ongoing and more intense (e.g. unable to sleep due to asthma symptoms versus hardly ever waking up at night due to asthma). The variability of the symptoms during the day can also change towards a more persistent pattern due to the development of incomplete reversibility of airflow limitation. As such, in people with severe asthma breathlessness thorough exercise can be a more prominent feature than the exerciseinduced bronchoconstriction observed in milder and moderate disease. The intensity and frequency of these symptoms contributes to the fact that exacerbations or lung attacks are common in people with severe asthma. These exacerbations or attacks can vary from having a mild increase in the normal frequency/intensity of symptoms, to that which requires medication with oral corticosteroids, hospitalisation or even treatment in intensive care units. As such, self-management education that promotes prompt recognition of worsening of symptoms and timely treatment is important. After an exacerbation or attack, it is also important that the patient's asthma management plan is reviewed by the treating physician. This would help to identify possible triggers and would guide the adjustment of treatment, and adoption of preventive measures.

Severe asthma prevalence

The prevalence of the disease has been estimated as 3.6 to 8.1% of the total asthma population according to studies carried out in The Netherlands³⁷ and Denmark³⁸, respectively (Figure 1-B). It is currently unknown what is the prevalence of severe asthma in Australia³⁹, but there are estimates of the prevalence of uncontrolled asthma. In a cohort of 2868 people

with current asthma aged 16 years old or older (57.1% female; median age group, 40-49 years), 22.7 and 23% of people respectively were categorised as having either "not well controlled" or "very poorly controlled" asthma, according to the ACT score ⁴⁰.

Figure 1-B: Pictogram of severe asthma prevalence according to Hekking et al.³⁷

High intensity treatment (orange + green + blue icons): 23.5% of all asthma patients; difficult to treat asthma (green + blue icons) (poor asthma control + high intensity treatment): 17.4% of all asthma patients; severe (refractory) asthma (blue icons = poor asthma control + high intensity treatment + good adherence + correct inhaler technique): 3.7% of all asthma patients. Purple icons: those asthma patients not on high intensity treatment (76.5%) Adapted from Severe Asthma Toolkit website: <u>https://toolkit.severeasthma.org.au/</u> Used with permission.

Severe asthma burden

Mortality and health-related cost

Mortality rates in people with severe asthma have not been widely addressed. Data from a long-term severe asthma cohort on long-term oral corticosteroid treatment (20 years follow-up; n=52; 37.5% female; aged [mean ± standard deviation [SD] 49.9±18.9 years) showed that from the 26 deaths observed, 38% were attributable to a fatal asthma attack. The authors also reported that the median (interquartile range [IQR]) time in years until death was 9 (3-13) years, and that mortality predictors were baseline poor asthma control and the number

of exacerbations during the first year of follow-up⁴¹. Similarly, in a longitudinal study from the USA (2-years average follow-up) higher severity of asthma scores and poorer perceived asthma control scores were both significantly associated with an increased risk of mortality in adults with severe atshma⁴². In Australia, a case-series analyses from 2013 also identified as risk factors for asthma death living in rural and remote location, history of psychosocial issues (social disengagement, mental illness, living alone, being unemployed), history of smoking, drug and alcohol dependence, allergies, respiratory tract infections, inadequate treatment and delayed treatment⁴³. Lastly, and as previously stated in this section, according to the 2016 Australian report on asthma-related mortality, females between 55 and 74 years old were almost twice as likely (1.8) to die from asthma than males of the same age, while women aged 75 and older were three times (3.05) more likely to die from asthma than their males counterparts⁻³². While the higher prevalence of asthma in women from adolescence⁴⁴ is a phenomenon that has been attributed to hormonal changes^{45, 46}, environmental and lifestyle (e.g. smoking, obesity) factors⁴⁶, it remains unclear why this mortality trend in females compared to males exists⁴⁷.

An important proportion of the cost and resources required to effectively manage asthma are expended upon these 3 to 8.1% of people with severe disease, whose poor control persists despite treatment with high doses of inhaled corticosteroids and additional controllers. It has been estimated that severe asthma accounts for 60% of the healthcare costs due to asthma, and that the cost per severe asthma patient is ten times higher than in those with mild disease⁴⁸.

^{*} Data from the "Australian Bureau of Statistics (ABS) Customised Report 2016"

Health Status in Severe Asthma

Compared to the general asthma population, the prevalence of comorbidities in severe asthma is even higher^{49, 50}. For instance, in a study carried out by Shaw and colleagues where patients from 11 European countries were included (n=421 severe asthma), the proportion of people suffering from GORD in the non-smoking severe asthma, smoking severe asthma and moderate-mild asthma groups were 47%, 64% and 21%, respectively⁴⁹. Similarly, the scores in the anxiety and depression symptoms questionnaire in people with severe asthma were almost twice as high compared to participant with milder disease⁴⁹. The increased burden that severe asthma has on patients, compared to milder forms of the disease, has been recently characterised by McDonald and colleagues using the treatable treat approach. This approach characterises patients with chronic airway diseases based on the presence of measurable and potentially treatable characteristics that have an impact on patients' prognosis (this approach will be further discussed in section 1.6)⁵¹. Using data from The Australasian Severe Asthma Web-based Database, McDonald and colleagues concluded that people with severe asthma presented a statistically significantly higher prevalence of treatable traits than people with non-severe disease, including being more prone to: exacerbations, obesity, OSA, depression, systemic inflammation, and GORD. The study also found that several of these traits were significantly associated with an increased risk of exacerbation, with depression, OSA, and previous exacerbation some of the better predictors of future exacerbations⁵². The risk of severe exacerbations is also higher in people with severe asthma. In the described study, 24% of participants with severe asthma had an emergency visit due to exacerbation in the last year compared to the non-severe group that had 3.9%, and 22.1% of patients with severe asthma had a hospitalisation compared to 2% in the milder group⁵². Similarly, Shaw and colleagues reported that people with severe

asthma and people with mild/moderate asthma had a mean of 2.5 and 0.4 exacerbations, respectively⁴⁹.

As a result of this high pulmonary and extrapulmonary morbidity burden, which includes associated comorbidities and symptoms, patients with severe asthma experience important impairments in their health-related quality of life (HRQoL) in comparison with less severe forms of the disease^{14, 49}. Literature on patients' perspectives of the disease supports the findings of clinical research on health status, and extends this knowledge beyond the characterisation of clinical characteristics, highlighting the impact that the disease has on patients' lives, on their relatives and on their close community⁵³. A systematic review evaluating patient's perspectives concluded that severe asthma was disempowering for patients and a threat to their identity and life roles⁵⁴. The high personal toll also includes other spheres of their life including their employment performance⁵⁵, functional and activity limitations⁵⁶, and the burden of treatment (mostly associated with the frequent consumption of oral corticosteroids)^{53, 54}. Regarding this last issue, it is important to note that in addition to the burden associated with the dependency on several medications for the control of their symptoms, people with severe asthma are at risk of developing several health complications related to the use of systemic corticosteroids. These can include metabolic disorders, depression, and bone density abnormalities⁵⁷.

1.2.2. Pathogenesis of severe asthma

Variable airflow limitation is one of the critical features of asthma, and results in the characteristic symptoms of wheezing, shortness of breath, coughing and chest tightness. The narrowing of the airway is the result of a complex interaction between key pathobiological features such as airway inflammation, airway hyper-responsiveness, airway remodelling and mucus hypersecretion. Asthma is a complex and heterogeneous condition, since the clinical

spectrum of patients and their responsiveness to medication varies according to the degree of the presence of the mentioned pathophysiological features¹.

Severe asthma presents the same pathophysiological mechanisms described in asthma: airway inflammation, airway hyperresponsiveness and airway remodelling. The severity of the symptoms and non-response to traditional pharmacological measures are due to a more persistent, heterogeneous and intricate combination of inflammatory mechanisms and to the pathophysiological features resulting from these, including airway remodelling with its consequent incomplete reversibility of airflow limitation⁵⁸.

Inflammation

The characterisation of the inflammatory phenotypes in severe asthma has been recognised as a clinically relevant issue, since these will determine the response to different treatments, including corticosteroids and biological agents, and the possible effects on physiological characteristics (e.g. mucus production and remodelling). Recognised inflammatory phenotypes are:

Persistent type-2 inflammation: The type-2 inflammation is characterised by the presence of cytokines (interleukin (IL)-4, -5 and -13) produced by type 2 helper T (T_H2) cells or innate lymphoid cells type 2 (ILC2) as an immunologic response to allergens and non-allergic agents, including infectious agents and irritants. IL-13 plays a role in promoting hyper-responsiveness, remodelling and mucus production. IL-4 and -5 drive the production of Immunoglobulin E (IgE) and eosinophils, respectively. These cytokines are also involved in the activation of mast cells, which also induce airway smooth-muscle contraction, remodelling, mucus secretion and an amplification of the inflammatory process³⁴. There is usually an allergic component associated with this inflammatory type. Nevertheless, unlike in milder types of asthma, in severe

asthma the mechanisms driving the type-2 inflammatory process may not be necessarily related to IgE production nor allergy⁵⁹. Type-2 inflammation is also associated with airway eosinophilia (\geq 3% of eosinophils in sputum sample⁶⁰), which is considered a marker of greater disease severity⁶¹, including poorer lung function and near-fatal asthma attacks⁵⁹.

The type-2 inflammatory pattern is the most prevalent inflammatory mechanism in asthma and in severe asthma⁵⁹. A clearer clinical difference between asthma severities in regards of this phenotype, is that in milder types of asthma people with the type-2 inflammatory phenotype are responsive to the use of glucocorticosteroids, and therefore the inflammatory process resolves after treatment³⁴. In severe asthma, however, the persistence of this inflammatory pattern (i.e. sputum eosinophilia) indicates a suboptimal response to glucocorticosteroids, which may be due to the impairment of the mechanisms that regulate the inflammatory reaction⁵⁸. The clinical importance of this inflammatory pattern in relation to treatment with monoclonal antibodies will be discussed in the treatment section (Section 1.2.4).

Neutrophilic inflammation (Non-type 2 inflammation): this type of inflammation is less well characterised in asthma both in terms of its mechanism and its clinical implications. However, it is an inflammatory pattern that has been associated with more severe disease⁶², less response to corticosteroids and lower lung function³⁴. It has been proposed that relevant mechanisms driving this inflammation are Type-1 T_H1 cells which produce interferon gamma (IFN)γ, or IL-17-producing T_H17 cells. Sputum neutrophilia is defined as the presence of ≥60% neutrophils in induced sputum samples⁶³.

- Mixed inflammation: this is a less common type of inflammation, and it is defined by the persistence of a combination of eosinophilia and neutrophilia in sputum. This inflammatory pattern has been associated with higher disease burden and airflow limitation. The cytokines involved are IL-6 and IL-17, which concurrently promote the production of $T_H 2$ and $T_H 17$ cells resulting in the presence of both inflammatory patterns³⁴.
- Paucigranulocytic (An absence of inflammatory granulocytes): this pattern is defined by the absence of eosinophilia and neutrophilia in sputum, and it is also less common than the type 2 and non-type 2 inflammatory phenotypes³⁴.

Airway hyper-responsiveness

Airway hyper-responsiveness is a hallmark of asthma and defined as an increased reactivity of the smooth muscle in the airway wall to different exogenous and endogenous stimulus (e. g. allergens, virus or exercise) that results in airway narrowing. These exposures trigger an exaggerated release of inflammatory mediators in the airway (mostly type-2 inflammatory mediators such as IL-13 and mast cells) which in addition to causing inflammation and airway oedema, also act on local nerves and smooth muscle cells of the bronchi prompting bronchoconstriction and the consequent airway narrowing⁶⁴.

Airway remodelling and mucus hypersecretion

Airway remodelling and mucus hypersecretion can also be present in a patient's airways and are usually more intense in patients with severe asthma. These structural changes are driven by repeated airway insults and chronic inflammation associated with asthma, which may alter the normal airway repair process⁵⁹. Remodelling of the airway wall includes subepithelial fibrosis⁶⁵, increased airway smooth muscle (because of these cells' hypertrophy and hyperplasia which leads to increased thickness of the airway wall), and increased blood

vessels in airway walls. These changes, which have been associated with the presence of persistent eosinophilic inflammation^{66, 67}, airway hyper-responsiveness⁶⁸ and bronchoconstriction⁶⁵, may result in incomplete reversibility of the characteristic airway obstruction and cause fixed airflow limitation, contributing to the long-term lung function decline⁶⁸. Additionally, the alteration of the mucus secreting mechanisms leads to mucus hypersecretion⁶⁸ and the concomitant build-up of mucus in the airway. This also contributes to airflow limitation.

1.2.3. Diagnosis and classification

The diagnosis of asthma is achieved after performing a physical assessment and taking a thorough history in relation to the presence and patterns of respiratory symptoms. It is objectively assessed by the demonstration of variable expiratory airflow limitation, ultimately through assessment of pre- and post-bronchodilator spirometry, and by the assessment airway hyperresponsiveness through bronchial provocation tests, either using direct bronchoconstriction challenges, such as methacholine, or indirect challenge using mannitol or hypertonic saline¹. Pre/post bronchodilator spirometry findings consistent with asthma in adults are an improvement of baseline values in FEV₁ and/or FVC higher than 12% and 200mL at least 15 minutes post administration of 200-400 mcg of short acting β 2 agonist bronchodilator treatment^{1, 3}.

The ERS/ATS guidelines on severe asthma recommend a systematic approach for the diagnosis of the condition³³. This approach includes:

Confirming asthma diagnosis and identify difficult-to-treat asthma: through a thorough history of asthma symptoms, triggers (environmental and occupational factors), pulmonary function test, and identification and management of contributing factors. Comorbidities (such as OSA, GORD, mental health problems), aggravating factors (such as smoking,

occupational exposure to irritants, obesity, allergens exposure), and disease management issues (such as availability and adherence to treatment, inhaler technique) are contributing factors that need to be identified and addressed before considering a severe asthma diagnosis.

Differentiate severe asthma from milder asthma: after contributing factors have been addressed, severe asthma is diagnosed in people who have been using high intensity treatment in the previous year (high dose inhaled corticosteroids plus either LABA or leukotriene modifier/theophylline, or systemic corticosteroids for over 50% of the last year) in order to avoid their asthma becoming uncontrolled.

Is severe asthma controlled or uncontrolled?: Uncontrolled asthma is defined by the presence of at least one of the following parameters: ACQ^{35} or ACT^{36} scores of >1.5 or <20 respectively, or by frequent (>2) severe exacerbations in the last year with use of oral corticosteroid, or by serious exacerbation (hospitalisation, ICU stay or mechanical ventilation) in the last year, or by airflow limitation (FEV1 < 80%) after appropriate bronchodilator withhold. People with uncontrolled asthma while on high intensity treatment (as described above) and in whom aggravating factors have been addressed, or those people with controlled or partiallycontrolled asthma whose control worsen at the reduction of corticosteroid treatment, are considered as having severe asthma.

The heterogeneity of severe asthma is demonstrated by its variation in clinical presentations, pathobiological, physiological characteristics and outcomes. An example of this was reported by authors in the Severe Asthma Research Program, who proposed to classify adult patients with asthma into five different clusters of the disease predominantly based on clinical characteristics⁶⁹:

- People with early onset atopic: They identified three groups of mild (Cluster 1), moderate (Cluster 2) and severe asthma (Cluster 4), according to reductions in lung function, medication needs, and frequency of exacerbations. This is the most easily recognised asthma phenotype which usually responds well to oral corticosteroids. These clusters are associated with type-2 inflammation (mediated by IgE and eosinophils).
- A late-onset, obese and non-atopic cluster (Cluster 3): which is most common in older females displaying moderate FEV₁ baseline reductions and frequent oral corticosteroid use to control exacerbations. This cluster has been associated with persistent type-2 eosinophilic inflammation⁷⁰.
- Adults with late-onset but long-duration and with very severe asthma symptoms (Cluster 5), who are likely non-allergic, and that have features of fixed airflow limitation or decreased reversibility.

Both, Cluster 4 and 5 fulfil the criteria of the severe asthma definition, and they mostly differ in their allergic status, and in their baseline lung function parameters and reversibility patterns.

In addition to the reported cluster classification⁶⁹, asthma can be also classified according to its inflammatory phenotype. Some identified phenotypes include⁷¹: allergic asthma (driven by type-2 inflammation/IgE), eosinophilic asthma (type-2 inflammation/IL5) and noneosinophilic asthma. The relevance of this classification lies in the potential ability to predict response to asthma treatment, such as corticosteroids, monoclonal antibodies or macrolides.

The Centre of Excellence in Severe Asthma has recently developed a checklist to aid with the characterisation and diagnosis of severe asthma⁷² (Table 1-1).

Clinical question	Assessment	
Has the diagnosis been	Clinical history and objective evidence of variability on	
confirmed?	symptoms and lung function.	
Is it severe?	Positive history of: poor control, airflow obstruction,	
	frequent exacerbations or life-threatening episodes	
Is treatment optimal?	Treatment with: high dose of ICS and LABA or other	
	controller, or moderate dose ICS and ≥2 controller	
Are self-management skills	i.e.: inhaler technique, adherence, monitoring, written	
optimal?	action plan.	
Are trigger factors	i.e.: allergens, cigarette smoke, emotional stress, respiratory	
identified and managed?	viral infection.	
Is co-morbidity identified	i.e.: sino-nasal disease, dysfunctional breathing, OSA,	
and managed?	Anxiety and/or Depression, GORD, obesity.	
What is the pattern of	i.e.: Eosinophilic (sputum assessment, FeNO, blood	
airway inflammation?	eosinophils), Neutrophilic (sputum assessment).	
What is the optimal	Developed with evidenced based interventions that target	
individualised management	clinical issues identified during a systematic and	
plan?	multidimensional assessment, in partnership with patients	
	and clinicians, considering patient preferences.	

Table 1-1: Severe asthma checklist:	for diagnosis and classification.
-------------------------------------	-----------------------------------

From (69) <u>https://www.severeasthma.org.au/severe-asthma-checklist/</u>. ICS: Inhaled corticosteroids; LABA: longacting 62 agonist; OSA: obstructive sleep apnoea; GORD: gastro-oesophageal reflux; FeNO: fractional exhaled nitric oxide levels. Extracted from the Severe Asthma Toolkit. Used with permission.

1.2.4. Treatment

Asthma treatment

Long-term asthma management focuses on achieving good symptom control, minimising future risk of exacerbation, fixed airflow limitation and treatment side-effects. This is achieved through the continuous assessment of: treatment prescription and adherence to therapy, and with appropriate self-management education (including correct use of inhalers and written-action plans, self-monitoring of symptoms, and avoidance of triggers) There is increasing recognition of the importance of developing a patient-health care provider partnership, to achieve better treatment outcomes¹.

Pharmacotherapy is escalated based on symptoms, risk of exacerbations and lung function, and back titrated as these outcomes improve (stepped approach). Asthma pharmacotherapy includes inhaled corticosteroids and bronchodilator therapy¹. Figure 1-C presents the Global Initiative for Asthma stepwise approach for adjusting treatment in adults.

Figure 1-C: Step-wise approach to control symptoms and minimise future risk.

Reproduced from (1): Global Strategy for Asthma Management and Prevention, 2018. Box 3-5, Page 44. Used with permission. Information related to children has been omitted. # Low dose ICS/formoterol is the reliever medication for patients prescribes low dose budesonide/formoterol or low dose formoterol maintenance and reliever therapy.

Severe asthma treatment

The management of severe asthma should involve a multidisciplinary team⁷³, and should include the systematic assessment and management of airway, comorbidities and risk factors⁷⁴. Referral to tertiary care and severe asthma clinics are paramount for the assessment of symptoms, biological characteristics, exposure to triggers and associated comorbidities in severe asthma⁷⁴ (Refer to Table 1.1 in section 1.2.3).

In terms of medication targeting the airway, pharmacotherapy moves away from the stepped approach, and focuses on more individualised therapy targeted to specific traits identified in patients. By definition, patients with severe asthma have already reached maximum treatment levels as defined in the step approach. Patients with severe asthma are commonly treated with high dose inhaled corticosteroids (>1000 mcg of beclomethasone or equivalent) and LABA (GINA step 4). Add-on therapies (GINA step 5) such as leukotriene receptor antagonists, theophylline, long-acting anti muscarinic antagonists (LAMA), and monoclonal antibody therapies could be prescribed and reassessed by a respiratory physician if required³³. The characterisation of the asthma inflammatory phenotype guides the prescription of monoclonal antibody therapies⁷⁵, such as anti-IgE (Omalizumab) for severe allergic asthma, and anti-IL5 (Mepolizumab) for eosinophilic severe asthma. Treatments for non-eosinophilic asthma may include LABA, LAMA, theophylline or macrolides⁷⁶ (Figure 1-D).

Bronchial thermoplasty is a non-pharmacological measure aimed at reducing the bulk of airway smooth muscle and thereby reducing the potential for airway constriction. Its use in severe asthma should follow an Institutional Review Board-approved systematic registry or clinical study³³

Figure 1-D: Choice of treatment according to inflammatory phenotypes in severe asthma.

Extracted from the Severe Asthma Toolkit website: <u>https://toolkit.severeasthma.org.au/</u> Used with permission. IgE: Immunoglobulin E; LABD: long-acting bronchodilator; LABA: long-acting β -agonist, LAMA: long-acting muscarinic antagonist.

Comorbidities including sino-nasal disease, anxiety and depression disorders, GORD and obesity, are common in severe asthma⁵². Their assessment and treatment can result in improvements in asthma features and quality of life of patients⁷³.

The assessment and management of risk factors including smoking, allergens, and others triggers, and poor self-management should also be considered. The GINA guidelines recommend that people with asthma should engage in regular physical activity for its general health benefits, and as a coadjutant for the management of obesity¹. Further analysis of this rationale will be provided in Chapter 2.

The participation of patients in pulmonary rehabilitation programmes has been less widely studied in asthma compared with COPD or bronchiectasis⁷⁷⁻⁸⁰. Nevertheless, it has been suggested that exercise training has several benefits on asthma control, exercise capacity⁸¹⁻ ⁸⁴, airway inflammation⁸⁵ and quality of life^{81, 86}. Studies assessing people with moderate to severe asthma, have also found that exercise training may have a positive impact on systemic inflammation, airway hyper-responsiveness, and quality of life. A positive impact of exercise training on asthma control and airway inflammation has also been reported in patients with worse asthma control^{82, 87}. Despite this evidence, studies evaluating the inclusion of patients with severe asthma in pulmonary rehabilitation programmes are scarce⁸⁸. The fact that severe asthma patients are less likely to be referred to these programmes (compared with patients with mild to moderate asthma) may be secondary to this scarcity. It is worth nothing however, that the only recommendation in the GINA guidelines regarding the referral to pulmonary rehabilitation programmes, is made for patients with features of asthma and COPD overlap¹. Despite this, the current Official ATS/ERS Statement on Pulmonary Rehabilitation states that there is now more evidence to support the inclusion of patient with asthma in pulmonary rehabilitation programmes⁸⁹.

1.3. Chronic Obstructive Pulmonary Disease (COPD)

1.3.1. Definition, prevalence and disease burden

Definition

According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD), COPD is defined as a "...common, preventable and treatable disease that is characterised by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases"².

COPD is a serious and progressive lung disease, characterised by airflow limitation that is not fully reversible following bronchodilator medication. COPD is typically characterised by two respiratory pathophysiological features: small airway disease and parenchymal destruction². The main respiratory symptoms of COPD include shortness of breath, initially with strenuous activities and later with minimal or no exertion, as well as cough and/or chronic bronchitis, and wheeze. Additionally, it is associated with significant extrapulmonary morbidity. Chronic respiratory symptoms may precede the development of airflow limitation, and they may also exist in absence of altered spirometric values⁹⁰. Exacerbations, or the acute worsening of symptoms resulting in escalation of therapy, are also common in COPD, especially as airflow limitation increases⁹¹. According to severity, exacerbations could be mild, moderate and severe, with severe being those cases when patients require hospitalisation or visits the emergency room. Severe exacerbations are associated with poor prognosis and increased mortality⁹².

Tobacco smoking is the predominant cause of COPD in the developed world. Other causes that have been associated with COPD include exposure to biomass fuel, outdoor and occupational air pollution, some respiratory infections during childhood, and chronic asthma. However, COPD also occurs in non-smokers or without the presence of these risk factors, indicating that genetic⁹³ and/or other environmental factors may be involved⁹⁴.

Prevalence

Worldwide, the global prevalence of COPD in 2010 was estimated as 11.7%, with 384 million COPD cases⁹⁵. These estimates come from large scale studies, such as the Burden of Obstructive Lung Disease⁹⁴, which used standardised methodologies, including spirometry, for diagnosis. In Australia, between 2006 and 2010 the prevalence of GOLD stage II or higher COPD (FEV₁ <80% predicted and lower) was 7.5% in people over 40 and 29.2% in people older than 75⁹⁶.

In Australia, the expenditure associated to COPD management in 2008 was \$8.8 billion. Costs related to productivity loss due to un-employability, absenteeism and premature death accounted for 77% of this figure. Direct health care expenditure accounted for 10% or \$0.9 billion of this number⁹⁷.

Burden

Mortality and health-related cost

The Global Burden of Disease Study⁹⁸ reported that in 2012 three million deaths, or 6% of global mortality, were due to COPD, positioning the disease as the fourth leading cause of death worldwide⁹⁹. When compared to international figures, the Australian rate of death for COPD is lower than in other developed countries¹⁰⁰. For instance, according to the World Ranking of COPD mortality rates for the period 2007-2011, the mortality rates for Australia, the United Kingdom (UK) and USA were approximately 80, 120 and 140 deaths per 100,000 population, respectively¹⁰⁰. Nevertheless, it still represents an important public health problem, especially in older people, and among people living in socioeconomically disadvantaged areas. In 2013, COPD accounted for 4.4% of all deaths among people of 55 years old and older, positioning it as Australia's fifth leading cause of death. In 2007-2011, the median age of death due to COPD was 81 years¹⁰¹.

Comorbidities

COPD is associated with significant extrapulmonary comorbidities that can worsen disease severity. Common systemic effects include cardiovascular disease, diabetes mellitus and metabolic disorders, sleep disorders, skeletal muscle dysfunction, bone density alterations, weight loss and cachexia, anxiety and depression and progressive activity limitation due to breathlessness^{2, 102-104}. People with COPD tend to rate their health status worse than people without the disease. According to the Australian Health Survey, 22% of people with COPD aged 45 years or over rated their health status as poor, compared to 6% of age-matched participants without COPD¹⁰⁵.

1.3.2. Pathogenesis of COPD

The defining feature of COPD is persistent expiratory airflow limitation. Additional pathophysiological features include gas trapping and gas exchange abnormalities secondary to parenchymal tissue destructions, mucus hypersecretion, pulmonary hypertension, exacerbations and systemic morbidity. Important processes underpinning these pathophysiological changes include chronic inflammation, oxidative stress and protease/antiprotease imbalance. Persistent airflow limitation and parenchymal tissue destruction (resulting in emphysema) are the result of inflammatory and structural changes occurring in the airways, lung parenchyma, and pulmonary vasculature¹⁰⁶. The narrowing of the small airways is caused by an amplified chronic inflammatory response to exogenous irritants (i.e. cigarette smoke, smoke from biomass fuel), a response is in part genetically determined. The inflammatory cells that play a major role in COPD are macrophages, neutrophils and T and B lymphocytes. The amplification of the inflammatory process and the induction of structural changes leading to the narrowing of the small airways and destruction of the lung parenchyma are closely related to inflammatory mediators released by these

inflammatory cells. Some of these inflammatory mediators include pro-inflammatory cytokines (such as tumour necrosis alpha (TNF- α), IL -1 β and IL-6) and growth factors (such as transforming growth factor beta [TGF- β])¹⁰⁷. Some patients will also present an increased number of eosinophils, T_H2 and ILC2 cells, especially in those where clinical characteristics of asthma are overlapping with COPD¹⁰⁸. An imbalance in the oxidative and antioxidant mechanisms^{108, 109} is also closely related to persistent inflammation and also play an important role in the pathogenesis of COPD. Oxidants are generated by exogenous irritants (i.e. smoke) and then released as a product of the abnormal inflammatory process^{108, 109}.

In addition to chronic inflammation, the destruction of the lung parenchyma is also due to an imbalance in the production of proteases (that break-down the lung connective tissue)¹⁰⁹ and antiproteases (that counteract this break-down)¹¹⁰. The increased production in proteases, derived from inflammatory and epithelial cells, mediates the destruction of the elastin in the lung parenchyma, contributing to the development of emphysema¹¹⁰.

Peribronchiolar and interstitial fibrosis is another pathological feature that is secondary to the inflammatory process and to the repeated injury of the airway, and that negatively impact on the development of small airways disease.

Generally, the inflammatory and structural changes observed in the airways worsen with disease severity and persists after smoking cessation¹⁰⁸. An important physiological abnormality in COPD, is hyperinflation¹¹¹. Static hyperinflation (increase of end-expiratory lung volume) is the result of the reduced lung elastic-recoil due to emphysema in addition to the peripheral expiratory airflow limitation. Dynamic hyperinflation occurs when air is trapped within the lungs with each successive breath due to increased respiratory demands (i.e. exercise, exacerbations), reducing the inspiratory capacity and altering the contractile

properties of respiratory muscles. As such, it has an important role in dyspnoea and reduced exercise capacity, and physical activity engagement¹¹²⁻¹¹⁴.

Elevated levels of systemic inflammation are reported to be prevalent in some COPD patients^{115, 116} and has been recognised as a contributor to the increased burden of comorbidities found in this condition¹¹⁷.

1.3.3. Diagnosis and classification

In their 2017 update, the GOLD guidelines recommend considering a clinical diagnosis in patients presenting with dyspnoea, chronic cough or sputum production, and/or a history of exposure to disease risk factors². The diagnosis is confirmed by spirometry. A post-bronchodilator FEV₁/FVC <0.7 ratifies the presence of persistent airflow limitation². The severity of airflow limitation, or GOLD classification, is presented in Table 1-2.

Table 1-2: Classification of severity of airflow limitation in COPD.

In patients with post-bronchodilator FEV1/FVC < 0.7				
GOLD 1	Mild	$FEV_1 \ge 80\%$ predicted		
GOLD 2	Moderate	$50\% \le \text{FEV}_1 < 80\%$ predicted		
GOLD 3	Severe	$30\% \le FEV_1 < 50\%$ predicted		
GOLD 4	Very Severe	FEV ₁ < 30% predicted		
From (2)				

In order to address the multiple dimensions of the diseases, in their 2011 document the GOLD strategy implemented the "ABCD assessment tool", which aimed to categorise patients based on their severity of airflow limitation (as per Table 1.2) but also taking into account the domains of symptoms (measured with the COPD Assessment Test [CATTM]), breathlessness (measured with the modified Medical Research Council [mMRC¹¹⁸]), and risk of exacerbation

(according to previous exacerbations or hospitalisations due to exacerbations). However, due to some limitations noted, the 2017 GOLD guideline now proposes a refined version of the ABCD assessment tool, in which the A-D categorisation is derived exclusively from patients' symptoms (measured either with CAT^{TM} or mMRC) and their exacerbation history. Spirometric classification (Gold 1-4) remains the cornerstone for diagnosis and management, but it is not considered for the ABCD classification. For instance, with this refined approach, a patient with a FEV₁% predicted of 35, a CAT of 9 (i.e. mild clinical impact) and a severe exacerbation in the last year will be considered GOLD grade 3 - group C (number and letter). This new assessment approach highlights the importance of symptoms and exacerbation risk to effectively guide treatment in COPD, while acknowledges that the FEV₁ is of limited utility when making treatment decisions for individualised patient care². Figure 1-E explains the redefined ADCD approach².

Figure 1-E: The redefined ABCD assessment tool.

Reproduced from (2): Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2018. Figure 2.4, page 33. Used with permission.

Additional assessment tools proposed in the 2017 GOLD guidelines include blood eosinophils count and assessment of comorbidities. Despite acknowledging that further research is needed², the use of blood eosinophils count as a surrogate of eosinophilic airway inflammation¹³ appears to have a predictive role as a marker of exacerbation risk and on the effect of inhaled corticosteroids for exacerbation prevention^{119, 120}. This is mostly true in patients displaying an increased eosinophilic inflammatory pattern of the airway (T_{H2} inflammation), a pattern associated with asthma-COPD overlap^{108, 121} and therefore, with increased treatment response to corticosteroid therapy^{122, 123}.

In terms of comorbidities, multidimensional assessment screening for comorbidities and risk factors have been proposed as a way to identify pulmonary and extrapulmonary treatment targets that aim to guide the design of personalised disease management^{124, 125}

1.3.4. Treatment

The main goals of stable COPD management are to reduce symptoms and to reduce frequency and severity of exacerbations. Additional goals are to improve health status and exercise tolerance, to prevent disease progression, and to reduce mortality². Therapeutic interventions that play and important role in the management of the disease include pharmacologic therapy such as bronchodilators, inhaled corticosteroids, vaccinations, and non-pharmacological interventions. These include self-management interventions, pulmonary rehabilitation, increasing levels of physical activity, and identification and reduction of risk factors, particularly smoking, which is one of the risk factors that has the greatest impact on disease aetiology, outcomes and progression². Pharmacological treatment is recommended according to assessment of symptoms and risk of exacerbations (ABCD tool), and it is based on escalation and de-escalation of medication according to these outcomes. Table 1-3 shows the pharmacological treatment according to A-D assessment.

Group	Preferred	Effects to be	Alternative	Further actions
	treatment	evaluated	treatment	
А	SABA or LABA	Dyspnoea	-	-
В	LABA or LAMA	Dyspnoea	LAMA + LABA	-
С	LAMA	Persistent	LAMA + LABA * or	-
		exacerbation	LABA + ICS	
D	LABA + LAMA	Persistent	LABA+LAMA+ICS	Roflumilast (FEV ₁
	LABA + ICS [^]	exacerbation	or LABA+ICS	<50% predicted+
	LAMA [#]		Macrolide	chronic
				bronchitis)
				Macrolide (in
				former smokers)

Table 1-3: Pharmacological approach according to ABCD assessment.

From (2).SABA and LABA: short and long-acting bronchodilator; LAMA: long-acting muscarinic antagonist; ICS: inhaled corticosteroid. *preferred treatment. ^ For patients with findings suggestive of asthma-COPD overlap and/or high blood eosinophil count. # In case a single bronchodilator is chose as initial treatment. Further actions are considered for patients who still have exacerbations after treatment with LABA+LAMA+ICS.

The participation in pulmonary rehabilitation programmes is considered a core component of COPD management, and it is associated with major improvements in outcomes commonly encountered in COPD patients, such as dyspnoea, exercise capacity, symptoms, skeletal muscle dysfunction, and health status. Pulmonary rehabilitation also leads to reduced health care utilisation in patients with COPD^{2, 89, 126}. Exercise training is an important part of pulmonary rehabilitation. It commonly includes an endurance training component; most commonly in the form of cycling or walking¹²⁷; and a resistance or strength training component¹²⁸, targeting the upper and lower limb muscles. In addition to exercise training, pulmonary rehabilitation programmes have an important educational component aimed at:

- the recognition of symptoms,
- promotion disease management knowledge and self-management skills,
- the provision of education and encouragement in health behaviour change aimed at the adoption of healthier behaviours (i.e. physical activity) and reduction of risk factors (i.e. smoking)⁸⁹.

Physical activity as a non-pharmacological intervention will be discussed in more detail later in this chapter.

Additional non-pharmacological strategies include influenza vaccination for all patients >65 years old, long term oxygen therapy for hypoxic patients when severity and exacerbation frequency increases, and education in end of life and palliative care² options.

1.4. Bronchiectasis

1.4.1. Definition, prevalence and disease burden

Definition

Bronchiectasis is a chronic pulmonary condition defined as an abnormal and permanent dilation and distortion of the bronchi and bronchioles, resulting from chronic inflammation of the airways, and leading to progressive destruction of the bronchial walls and lung parenchyma. This permanent bronchial damage can lead to a vicious cycle of bacterial infections and impaired mucus clearance¹²⁹. Airflow limitation and cough with mucus hypersecretion are its main clinical features, but the condition is usually also associated with other impairments and comorbidities such as chronic rhinosinusitis, fatigue, dyspnoea, haemoptysis and thoracic pain¹³⁰.

The aetiology of bronchiectasis is multifactorial and may be difficult to ascertain. Common causes include post-infection (both in childhood and adulthood), different airway insults such as impairment of the immune system leading to repeated infections, and congenital causes (Table 1-4). Historically, a major differentiation has been made between cystic fibrosis and non-cystic fibrosis related bronchiectasis. Cystic fibrosis is a recessive genetic condition that affects a number of organs, especially the lungs and digestive system. In terms of this lung disease it has clinical characteristics that also include chronic cough, sputum production, repeated chest infections, and bronchiectasis results. Current bronchiectasis guidelines however, have emphasised the terminological differentiation between bronchiectasis and bronchiectasis due to cystic fibrosis since the latter is a different disease both in pathophysiology and in its treatment features¹³¹.

		Aliberti et al. ¹³² (n=1145)	Chalmers and Hill. ¹³³ (review)	Shoemark et al. ¹³⁴ (n=165)
Idiopathic		34	34 30–53%	
Post severe infection		26	33–42%	32
Connective disease	tissue	8	3–6%	2
Immunodeficiency		5	1-8%	7
ABPA		4.9 (asthma 3.2)	1–7% (associated with asthma)	8
Ciliary dysfunction		1.8	1–2%	10
Congenital		0.5	<1%	-
Inflammatory disease	bowel	2.2	1–2%	3

Table 1-4: Prevalence of common aetiological causes of bronchiectasis.

ABPA: allergic bronchopulmonary aspergillosis

Prevalence

The global prevalence of bronchiectasis is not accurately known, but studies from the USA¹³⁵ and UK¹³⁶ have found an increased incidence of the condition compared to previous data. For instance, Quint and colleagues reported that between the 2004-2013 periods, the prevalence of bronchiectasis in the UK increased from 301.2/100,000 to 485.5/100,000 in men, and from 350.5/100,000 to 566.1 in women¹³⁶. Several publications have also reported older populations, especially females, are at a higher risk of developing bronchiectasis^{23, 135, 136}. There are little data available for the overall prevalence or incidence of bronchiectasis in Australia²³. However, studies have shown that the prevalence of bronchiectasis is disproportionately high in indigenous populations from Australia and New Zealand¹³⁷⁻¹³⁹. In Australia, a study of Central Australian Indigenous children found a prevalence of 1.5 % of

the population, while no case of bronchiectasis was found among non-indigenous children¹³⁷. Disadvantaged socioeconomic conditions and poor access to health care services, including timely access to antibiotic treatment and vaccination programmes (such as influenza and pneumococcal vaccination programmes), are among causes of these disparities¹³⁸

Burden

Mortality and health-care use

There are scarce data reporting on mortality in bronchiectasis. Quint and colleagues reported an age-adjusted mortality rate in the UK (2004-2013 period) of 1437.7 per 100,000¹³⁶. In Australia, the age-standardised mortality rate for bronchiectasis between 2001 and 2013 has remained relatively steady at less than 2.2 deaths per 100,000 population¹⁰⁰. This figure includes bronchiectasis both as the underlying or associated cause of death. In terms of health care use, bronchiectasis was the principal and secondary diagnosis of 5,010 and 9,018 hospitalisations respectively in the 2006-2007 period in Australia. In agreement with international data, hospitalisation for women were twice as high compared to men, a trend that becomes more evident in older age groups²³. The economic burden of bronchiectasis has been suggested to be similar to COPD, and that this increases as measures of severity, such as exacerbations and hospitalisations, deteriorate¹³¹.

Health status

Individuals with bronchiectasis suffer from significant respiratory morbidity and poor HRQoL¹⁴⁰⁻¹⁴². People with bronchiectasis share similar clinical characteristics with people with moderate to severe COPD and severe asthma, such as increased dyspnoea, impaired exercise capacity, and frequent exacerbations. In addition, bronchiectasis can often overlap with these diseases, worsening its severity^{5, 20-22}. For instance, Martinez-Garcia et al. reported that the prevalence of bronchiectasis in a cohort of 201 patients with COPD GOLD 2-4 was 57.2%, and

that the condition was associated with a 2.5 fold increased adjusted mortality ratio (hazard ratio (95% CI) 2.54 (1.16–5.56); p < 0.02)²¹. The overlap with COPD has also been associated with higher levels of airway inflammation and requiring longer recovery-time post exacerbation²². In regard to asthma, overlap between these conditions has been also associated with a higher risk of experiencing exacerbations than when bronchiectasis is the only respiratory diagnosis^{5, 20}.

1.4.2. Pathogenesis of bronchiectasis

The abnormal and permanent dilation and distortion of the bronchi and bronchioles, is the result of distinct and cyclic phases of infections, which may lead to altered pulmonary defence mechanisms and chronic inflammation^{143, 144}. The infective insult, accompanied by an ineffective host-immune mechanism, leads to an exaggerated inflammatory response¹⁴⁵, mediated mostly by neutrophils, lymphocytes and macrophages. The release of these inflammatory mediators in the bronchi, especially neutrophils, promote tissue damage, impairing the function of the cilia epithelium and stimulating hypersecretion from the mucous glands¹⁴⁶. The impaired mucociliary clearance and excess of sputum production create the optimal conditions to make the airways susceptible to microbial colonisation. Even though findings of bacterial colonisation and inflammatory markers are intermittent in patients with bronchiectasis, in some patients these findings are persistent, which worsen the prognosis of the condition. Pathogens commonly found in the sputum of bronchiectasis patients are Haemophilus influenza, Pseudomonas aeruginosa and Staphylococcus aureus. Again, neutrophils play an important role facilitating bacterial adherence into the lung epithelium^{143, 145}. As a result of the bacterial colonisation, further chronic inflammatory processes are triggered, which accentuate the tissue damage, and lead to the characteristic permanent dilatation of the bronchi, which consequently, will make the airway prone to a self-perpetuating cycle of infection, chronic inflammation and sputum production (Figure 1-

F).

Figure 1-F: The vicious circle of bronchiectasis.

Extracted from Bronchiectasis Toolbox website: <u>http://bronchiectasis.com.au/</u>. Used with permission.

1.4.3. Diagnosis and classification

Bronchiectasis is suspected with the presence of episodes of productive cough (\geq 3 per year, each lasting \geq 4 weeks) accompanied or not by other respiratory symptoms. The diagnosis is reliably confirmed by high resolution computed tomography (HRCT) scan of the lung, and as such it is a condition that can go under-diagnosed unless the patient has been investigated by a respiratory specialist¹⁴⁷. According to the morphological findings from the HRCT, the bronchiectasis pattern can be classified as cylindrical, varicose, and saccular or cyst. More than one type of bronchiectasis focus may be present in the same patient.

Based on the presence of the bacterial organism in sputum culture (either Pseudomonas aeruginosa or other type of infection) and sputum production versus dry cough, four clinical phenotypes of bronchiectasis have been identified. According to this categorisation, the Pseudomonas cluster was associated with most severe disease, worst radiological findings and inflammatory patterns, and lowest functional status, while the cluster of patients with dry cough was associated with less severe disease¹³².

1.4.4. Treatment

The goals of bronchiectasis management include monitoring severity, avoiding excessive decline in lung function, minimising infective exacerbations, and optimising general wellbeing, symptom control and health-related quality of life ¹³¹. Thus, the management of the condition involves the combined effort of a multidisciplinary health care team. Treatment strategies can include the use of antibiotics to treat infections or as a prophylactic measure, a daily routine of breathing and sputum clearance techniques which should be supervised by a specialised physiotherapist, pulmonary rehabilitation in the case of impaired exercise capacity¹²⁶, Influenza vaccinations and, when appropriate, surgery^{131, 147, 148}. As with severe asthma and COPD, education of symptoms, timely use of written action plans, and reduction of risk factors such as smoking, play an important role in the management of the disease^{131, 147, 148}.

The pharmacological management of the disease can include antibiotic therapy, bronchodilators, and muco-active agents. Therapy is dictated by the general status of the patient, since in stable patients only exercise and airway clearance regime may be sufficient. Antibiotics, the cornerstone of pharmacological management in bronchiectasis, are recommended in three situations: to attempt eradication of new bacterial isolates, to treat exacerbations, and in some specific cases, as a long-term maintenance therapy when chronic colonisation has been observed. Guidelines recommend that the type of antibiotic should be selected according to results of lower airway culture test when possible, clinical severity and patient characteristics¹⁴⁸. Bronchodilators can be prescribed in case of bronchoconstriction and reversibility. Inhaled corticosteroids are only recommended in patients with underlying asthma or COPD. In terms of muco-active agents to facilitate airway clearance, the current guidelines from the Thoracic Society of Australia and New Zealand states that agents such as isotonic and hypertonic saline and mannitol are not currently recommended for routine use. Nevertheless, a therapeutical trial of these agents in patients with frequent exacerbations is suggested¹⁴⁷.

1.5. Summary Part 1: OAD section

Severe asthma, COPD and Bronchiectasis are chronic conditions of the lower respiratory airway that are underpinned by complex inflammatory processes resulting in airflow limitation of different severity and reversibility.

Shared characteristics of these diseases include cough, wheezing, reduced exercise capacity, dyspnoea, higher susceptibility to respiratory infections, and high prevalence of comorbidities. Overlap between these diseases is also common, and usually leads to worse clinical presentation. Medication, including bronchodilator and anti-inflammatory agents, are used to control symptoms and to manage exacerbation. However, dependency on several medications is common, increasing the risk of developing further comorbidities. As a result, these diseases pose a high burden in patient's health status and in the health system.

Non-pharmacological treatments and reduction of risk factors are important coadjutants in the management of these diseases, especially in COPD. Among these strategies, the promotion of physical activity and reduction of sedentary time are promising strategies due to the positive health impact show in several studies on health outcomes (see sections 1.2.1.1 and 1.2.1.2).

In the next section, I will give some context regarding characterising physical activity and sedentary time as a non-pharmacological strategy for the management of OAD, and I will define the label-free approach to be used in part of this thesis.

1.6. Is physical activity a treatable trait in OAD?

In the last few years, there has been an increasing recognition of the need to revise and update traditional management approaches for chronic airway diseases, and most specifically for COPD and severe asthma^{12, 51, 125, 149}. Proposed reasons for this change include: the lack of progression in reducing the excessive disease burden ^{31, 150}; the high level of overlap found in these conditions^{1, 17-21} which in cases makes it difficult to distinguish a clear diagnosis and may eventually lead to patients' over or under treatment with the consequent suboptimal treatments outcomes and loss of resources; and the fact that "labelling" a patient with a given diagnosis does not fully recognise the biological and clinical heterogeneity of the diseases¹⁴⁹.

In order to address these issues, a label-free paradigm for chronic airway diseases has been proposed, where these diseases are managed using a precision medicine model, based on the identified treatable traits⁵¹. The concept of personalised medicine has been defined as "treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations"¹⁵¹. In 2016, Agusti and colleagues proposed the "treatable traits management approach for chronic airway diseases" which refers to phenotypic or endotypic characteristics found in OAD that can be assessed and potentially targeted with treatment⁵¹. Clinical phenotypic characteristics refers to a measurable single or multiple disease feature, that describe differences between people with the disease, and that relate to clinically meaningful outcomes, such as symptoms, response to therapy, biological and/or radiological features or death¹⁵².

The identification of these traits requires a thorough assessment which encompasses several domains of the diseases. Gibson and McDonald in 2010, suggested that rather than trying to

differentiate between diseases that show a high degree of overlap (in this particular case, asthma and COPD in the elderly) with the concomitant difficulty to distinguish one disease from another; a better approach may be to describe "the patterns of airways disease on the basis of clinical and pathophysiological features" and to subsequently tailor interventions according to the features identified¹²⁵. They proposed that a multidimensional assessment^{125, 153} covering the domains of airway, comorbidities, risk factors, and behavioural factors, could identify issues that were clinically significant, but that were not commonly addressed with a "label-centred" approach¹⁵³. This approach was later updated as the CARe model¹⁵⁴ (Figure 1-G), which highlights the Comorbidities, Airway, and Risk Factors domains.

Extracted from (154): Gibson P; McDonald V. Phenotyping Asthma and COPD. BRN Rev. 2016; 2. Figure 1, page 242. Used with permission.

The treatable-traits model for the management of patients with chronic airway disease⁵¹, also identifies pulmonary, extra-pulmonary and behavioural characteristics (i.e. traits) that
are responsive to treatment (i.e. treatable). More recently in 2017, the Lancet Commission into Asthma lead by Pavord and colleagues, supported this idea recommending that in addition to investigating and treating adjacent comorbidities, behavioural and environmental factors present in patients with chronic airway diseases, the two dominant traits that needed to be the assessed and managed were eosinophilic airway inflammation, due to its impact on risk of exacerbations/lung attacks, and airflow limitation, because of its impact on symptoms¹².

It is important to evaluate where physical activity lies in this new OAD management paradigm. It has been suggested that the link between physical exercise (the subset of the physical activity behaviour that is planned, structured and repetitive body movement done for the improvement and maintenance of physical fitness¹⁵⁵) and the improvement of clinical outcomes in OAD can be explained through several physiological pathways in addition to the improvement in cardiovascular fitness. In COPD for instance, exercise training has shown beneficial effects on measures of cardiovascular function^{156, 157} (e.g. heart rate variability, aortic pulse wave velocity) and in muscle function even in patients with severe disease⁸⁹. The positive muscle adaptations observed after training have been linked to an improvement on exercise capacity, and to a reduction of the ventilatory requirements for a given submaximal work rate through the betterment of the oxidative capacity of the skeletal muscle⁸⁹. In asthma, it has been suggested that the benefits of exercise may be due to the physical extension occurring in the airway smooth muscle as a result of an increased tidal volume and respiratory rate during exercise¹⁵⁸, to a reduction in bronchial hyperresponsiveness and systemic inflammation⁸⁷, and to an increase in energy expenditure that may contribute to weight loss⁸². Physical inactivity could be considered an impairment in the risk factor domain likely to be present in people with each of the chronic airway diseases regardless of the primary diagnosis. Characteristics and symptoms such as dyspnoea, cough, impaired exercise capacity, sputum production, airflow limitation and comorbidities are common findings among OAD patients, which are likely to negatively impact the amount of physical activity and sedentary time in which these patients engage. Physical activity is defined as any bodily movement generated by skeletal muscle and resulting in energy expenditure¹⁵⁹. Meanwhile, sedentary behaviour is defined as the engagement in activities whilst lying down or sitting and expending low levels of energy, during waking hours. Importantly, physical activity and sedentary time are measurable and potentially treatable risk factors, which are known to impact on morbidity and mortality in general populations¹⁶⁰⁻¹⁶⁴. Therefore, it is likely that physical activity and sedentary time are relevant in the new model of treatable traits for OAD. Despite this evidence, physical activity and sedentary time have not been widely characterised nor addressed in OAD as treatable risk factors, outside of COPD.

A reason for this disparity, may be related to the fact that research into these behaviours has mostly followed a label-centric approach towards COPD. Since the seminal study of Pitta and colleagues in 2005¹⁶⁵, there has been a growing body of evidence characterising these impairments in COPD and examining the associations of sedentary time and physical activity, the latter to a greater extent, with important disease outcomes¹⁶⁶. This work is summarised further in section.1.7.5. This evidence has highlighted the importance for people with COPD to engage in physical activity and exercise programmes, such a pulmonary rehabilitation, with the concomitant benefits extending beyond the respiratory system⁸⁹. Currently, research in COPD has slightly moved away from characterising these behaviours only, and it now focuses on developing and testing interventions aimed at promoting healthier movement behaviours in this population¹⁶⁷⁻¹⁶⁹.

In severe asthma and bronchiectasis, however, whilst some studies have demonstrated the effectiveness of exercise training programmes on disease outcomes such as bronchial

hyperresponsiveness, quality of life, exacerbations and dyspnoea^{87, 170}, interventions aimed at improving physical activity and decreasing sedentary time levels are scarce⁸⁴. Reasons for this paucity may relate to the limited available evidence characterising these behaviours in these population. The importance of generating this knowledge is to create a base of evidence that can: estimate if the impairment of these behaviours exists in these diseases and if so, to what extent; and to describe the associations of these behaviour with relevant disease outcomes. This new knowledge can guide the direction of treatment interventions for severe asthma and bronchiectasis, since extrapolating what is known in COPD to these conditions may lead to the design of ineffective interventions.

In order to have a better understanding of this gap in knowledge, in Part 2 of this chapter I will present the definitions of physical activity and sedentary time, describe the different measurement methods for these behaviours, and review the published evidence of the characterisation and impact of these behaviours on COPD, bronchiectasis and severe asthma.

1

Part Two

1.7. Activity behaviours

1.7.1. Physical activity: definition, health impact, and characterisation on general populations

The WHO has defined physical activity as any bodily movement generated by skeletal muscle and resulting in energy expenditure¹⁵⁹. This definition includes different domains of physical activity, such as leisure-time activity, commuting or transportation physical activity, occupational physical activity, and household chores physical activity. In general, leisure-time physical activity encompasses all those activities performed outside of work, transportation and house chores and which are done at a personal preference. Planned exercise (i.e. exercise training at home, gym sessions, etc.) sports or jogging would be examples of this domain¹⁷¹. Physical activity can be categorised according to its absolute and/or relative intensity. Absolute intensity refers to the rate of energy expenditure required to perform any physical activity, and is commonly divided into in light, moderate and vigorous intensity physical activity (Table 1-5)¹⁷². The metabolic equivalent of task (METs) is a common reference to measure absolute intensity¹⁶¹. METs provide estimates of intensity based on energy expenditure, where 1-MET is equal to the energy spent by a person when sitting quietly in a chair. This is also known as the resting metabolic rate and accounts for approximately 3.5 ml O₂ x Kg body weight⁻¹ x minutes or hours⁻¹¹⁷³. Relative intensity refers to the ease or difficulty with which a person performs a certain activity, and it is more closely related to physiological parameters of the individual (i.e. percent of aerobic capacity, percent of maximal heart rate, or levels of breathlessness)¹⁷⁴.

Term	METs	Examples
	-	- Walking slowly around home, store, or office (2.0 METs)
Light physical	1.1 - 2.9	
activity		- Standing performing light work such as making bed, washing dishes, ironing, preparing food or store clerk (2.0–2.5 METs)
Moderate physical activity	3.0 - 5.9	- Walking the dog (3.0 METS), walking at 6.4 km/hr on the level, firm surface, very brisk pace (5.0 METS)
		- Heavy cleaning: washing windows, car, clean garage, sweeping floors or carpet, vacuuming, mopping (3.0–3.5 METs)
Vigorous physical activity	≥6	 Walking at very, very brisk pace on the level, firm surface (7.2 km/hr) (6.3 METs) or running at 8 km/hr (8.0 METs)
		- Carrying heavy loads such as bricks (7.5 METs)

Table 1-5: Examples of METs equivalents of light, moderate and vigorous physical activity.

Adapted from Ainsworth et al. (172). MET: Metabolic equivalent of task.

There is substantial evidence that participation in regular physical activity decreases the risk of several diseases and cancers, such as coronary heart disease, stroke, type 2 diabetes mellitus, hypertension, depression, colon cancer, and breast cancer^{160, 161}, and reduces the risk of all-cause and cardiovascular mortality^{160, 175}. Likewise, inactivity, or failing to meet the recommended levels of physical activity, has been regarded as the fourth leading risk factor for global mortality, contributing to 6% of deaths globally¹⁶¹, and 9% of premature mortality¹⁷⁶. Additionally, it has been estimated that inactivity contributes to increase the burden of disease from coronary heart disease, type 2 diabetes mellitus, breast and colon cancer by 6%, 7%, 10% and 10%, respectively¹⁷⁶.

As a significant and modifiable risk factor, global and local organisations have endeavoured to promote engagement in physical activity, highlighting the health benefits associated with maintaining an active lifestyle. The creation of physical activity guidelines responds to the need for giving an evidence-based framework that summarises the minimum amount of activity required by age group, to promote the health benefits associated with activity. Table 1-6 illustrates the current WHO's recommendation for adults and older adults¹⁶¹.

Adults 18 to 64 years	-Weekly, at least 150 minutes of moderate-intensity aerobic	
	physical, or at least 75 minutes of vigorous-intensity aerobic	
	physical activity throughout the week, or an equivalent	
	combination of both.	
	-Aerobic activity should be performed in bouts of at least 10	
	minutes duration**.	
	-For additional health benefits, adults should increase their	
	moderate-intensity aerobic physical activity to 300 minutes per	
	week or engage in 150 minutes of vigorous-intensity aerobic	
	physical activity weekly, or an equivalent combination of moderate-	
	and vigorous-intensity activity.	
	-Muscle-strengthening activities should be done at least twice	
	weekly	
Older adults (≥65 years)	-Weekly, at least 150 minutes of moderate-intensity aerobic	
	physical, or at least 75 minutes of vigorous-intensity aerobic	
	physical activity throughout the week, or an equivalent	
	combination of both.	
	-Aerobic activity should be performed in bouts of at least 10	
	minutes duration.	
	-For additional health benefits, adults should increase their	
	moderate-intensity aerobic physical activity to 300 minutes per	
	week or engage in 150 minutes of vigorous-intensity aerobic	
	physical activity weekly, or an equivalent combination of moderate-	
	and vigorous-intensity activity.	
	-People with poor mobility should perform physical activity to	
	enhance balance and prevent falls on \geqslant 3 days/week	
	-Muscle-strengthening activities involving major muscle groups	
	should be done at least twice weekly.	
	- In case health conditions impairing the ability to engage in the	
	recommended levels of activity, people of this age group should still	
	be as physically active as their abilities and condition allow	

Table 1-6: Current recommendations of physical activity for adults.

From (161). **The 10-minutes bout recommendation has been recently excluded from the "2018 Physical Activity Guidelines Advisory Committee Scientific Report" (174), after research concluded that periods of any length of time are beneficial to reach the recommended total volume of physical activity, and its associated health benefits.

Engaging in higher doses of physical activity than the recommended >150 minutes of moderate or >75 minutes of vigorous physical activity per week (or 500 to 1000 METminutes/week) results in enhanced improvements in health¹⁶⁰. For instance, Arem and colleagues found that compared to people not reporting leisure time physical activity, those meeting the physical activity guidelines or doing up to twice as much that amount had a reduction in the relative risk of all-cause mortality of 31% [HR, 0.69 (95% CI, 0.67-0.70)]. This figure decreased to a 37% reduction in mortality risk for people engaging into 2 to 3 times the recommended levels of physical activity [HR, 0.63 (95% Cl, 0.62-0.65)]¹⁷⁷. The authors also reported a plateau in the relative risk reduction 0.61 (39% lower mortality risk) in people doing 3 to 10 times the minimum recommended amount of activity¹⁷⁷. According to the 2018 Physical Activity Guidelines Advisory Committee Scientific Report, similar dose-response curves to that reported by Arem and colleagues have been observed for cardiovascular disease incidence and mortality, and for the incidence of type 2 diabetes mellitus¹⁷⁴. Nonadherence with the physical activity guidelines (doing less than the recommended amount of moderate and vigorous physical activity [MVPA]) is defined as physical inactivity^{176, 178}. Importantly, engaging in lower or lighter levels of activity than those recommended in the guidelines versus not doing any MVPA still results in health benefits. In fact, studies have shown that the majority of the reduction in mortality risk associated to cardiovascular disease¹⁷⁹ (n=3038, adults of \geq 50 years old from Great Britain with type 2 diabetes) or in allcause mortality¹⁷⁷ (pooled data from 6 studies in the National Cancer Institute Cohort Consortium; n=661137; 62 years old median age [21-98 years old range]), is achieved by shifting from no physical activity to performing some level of physical activity. This is particularly important message to highlight, particularly for people with chronic respiratory diseases who may struggle to meet the current recommendations of MVPA.

Studies characterising the level of physical activity have reported that the proportion of adults adhering to the guidelines of physical activity is low^{180, 181}. For instance, in the 2003-2004 National Health And Nutrition Examination Survey (NHANES), Troiano¹⁸⁰ et al. reported that adults engaging in device-measured 30 minutes/day of physical activity were less than 5%¹⁸⁰. Similarly, in the 2007-2009 Canadian Health Measure Survey (CHMS), Colley et al. reported that 15% of adults engaged in the recommended levels and patterns of physical activity (150 minutes/week of MVPA in 10 minutes-bouts), and the number dropped to 5% for people engaging in 150 minutes of MVPA on a regular basis (i.e. 5 days /week)¹⁸¹. However, it is important to highlight that these estimates come from physical activity results measured with physical activity monitors. The development of the physical activity guidelines has been mostly based on self-report measures of physical activity (questionnaires). Therefore, comparing adherence between results obtained from activity monitors with questionnaires may result in inaccurate estimates. This point can be exemplified in the following results from Australia and the USA. In Australia, the 2014-2015 National Health Survey reported that 47.8% of adults aged 18-64 years and 25% of adults aged ≥65 years engaged in the recommended levels of aerobic physical activity. Almost 38% of adults aged 18-64 years did less than the recommended amount of physical activity, and 15% did not engage in aerobic physical activity in the last week. Similarly, in adults \geq 65 years, 75.1% did less than the recommended amount of aerobic physical activity¹⁸². In the USA, results from the 2016 National Health Survey reported that close to 53% of people aged ≥18 years were meeting the aerobic physical activity guidelines¹⁸³. Data reporting on the adherence to recommendations for muscle strengthening activities (muscle-strengthening activities at least twice/week) are less widely available, but data from the Australian National Nutrition and Physical Activity Survey 2011–2012 found that from the 52% of respondents meeting the MVPA guideline, only 15% of them were also meeting the muscle strengthening activity recommendations¹⁸⁴. Similarly estimates have been reported in the 2011 Behavioral Risk Factor Surveillance System (BRFSS) in the USA, where from the 51.6% of adults meeting the MVPA guideline, only 20.6% met both recommendations¹⁸⁵. Similarly, in the 2016 National Health Survey, from the 53% of adults meeting the aerobic physical activity guidelines, only 22% were meeting both recommnedations¹⁸³.

In general, these studies also showed that males tended to be more active than females, that the levels of physical activity declines with age, and that higher levels of education were associated with higher likelihood of meeting the physical activity recommedations^{180-182, 184-186}.

1.7.2. Sedentary behaviour: definition, health impact, and characterisation on general populations

Sedentary behaviour is a distinct entity from physical (in)activity, and refers to any waking behaviour in a lying or sitting position and expending low levels of energy (\leq 1.5 METs)¹⁸⁷ (Figure 1-H). Sedentary behaviours can occur in work, domestic, transport or leisure contexts with the most common sedentary behaviours being sitting while at work and watching television. Sedentary time is defined as the time spent in sedentary behaviours. This definition includes any duration and context (i.e. leisure time, work) of sedentary activities.

Previously, sedentary behaviour was commonly but erroneously used interchangeably with, or in place of inactivity (performing insufficient amount of MVPA). However, in the past decade or so, it has been recognised that sedentary behaviour is distinct from not meeting the physical activity guidelines as someone can meet the guidelines but still sit for the remainder of the day. As a result of the growing interest in the study of sedentary behaviour, the Sedentary Behaviour Research Network (SBRN) has recently undertaken a Terminology Consensus Program where standardised terminologies and definitions were proposed¹⁷⁸.

Some of these definitions are reported in Table 1-7.

Figure 1-H: Conceptual model of movement and non-movement behaviours proposed by the SBRN.

Extracted from (178): Tremblay M et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act, 2017. 4. Figure 3, page 11. <u>http://creativecommons.org/publicdomain/zero/1.0/</u>. No changes made.

Term	General definition	Examples
Sedentary behaviour	Any waking behaviour characterised by an energy expenditure ≤1.5 metabolic equivalents (METs), while in a sitting, reclining, or lying posture.	Use of electronic devices (e.g., television, computer, phone) while sitting, reclining, or lying; reading/writing/talking while sitting; sitting in a bus, car or train.
Stationary behaviour	Stationary behaviour refers to any waking behaviour done while lying, reclining, sitting, or standing, with no ambulation, irrespective of energy expenditure.	Use of electronic devices (e.g., television, computer, phone) while sitting, reclining, lying, or standing without ambulation; reading/writing/drawing/painting/talking while sitting; sitting at school/work; sitting in a bus, car or train.
Sitting	A position in which one's weight is supported by one's buttocks rather than one's feet, and in which one's back is upright.	Active sitting: Working on a seated assembly line; playing guitar while seated; doing arm ergometry while in a wheelchair, etc. Passive sitting: Refer to sedentary behaviour examples while sitting.
Reclining	Body position between sitting and lying	Passive reclining : Lounging/slouching on a chair or couch while sedentary. Active reclining: Recumbent cycling.
Lying	To be in a horizontal position on a supporting surface	Passive lying: Lying on a couch, bed, or floor while sedentary. Active lying: Isometric plank hold.
Standing	A position in which one has or is maintaining an upright position while supported by one's feet.	Active standing: Standing while painting; standing while washing dishes, etc. Passive standing: Standing in a line; standing for a hallway discussion, etc. Supported standing: Standing while holding a couch, chair, or a parent's hand; standing with the aid of crutches
Screen time	Time spent on screen- based behaviours. These behaviours can be performed while being sedentary or physically active.	Watching TV while sitting, lying, or running. Playing active video games.
Sedentary behaviour pattern	The way sedentary behaviour is accumulated throughout the day or week while awake (e.g., the timing, duration and frequency of sedentary bouts and breaks).	Prolonger : Someone who accumulates sedentary time in extended continuous bouts. Breaker : Someone who accumulates sedentary time with frequent interruptions and in short bouts.

Table 1-7: Terminologies and definitions proposed by the SBRN.

From (178): Tremblay M et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act, 2017.<u>http://creativecommons.org/publicdomain/zero/1.0/</u>. Changes have been made.

High levels of sedentary time have been associated with several deleterious health outcomes in the general population, such as increased cardio-metabolic markers in adults^{188, 189}, and all-cause, cardiovascular-, colon and breast cancer-related mortality^{164, 189, 190}. A positive dose-response relationship between the amount of sedentary behaviour and mortality has been reported for some studies, highlighting the deleterious effect of this behaviour on health outcomes. In their meta-regression analysis of one million participants, Ku and colleagues found that the mortality risk significantly increased as the total amount of sedentary time surpassed seven hours. In these studies, sedentary time was measured by questionnaires. In the studies using activity monitors, risk increased with nine hours of sedentary time¹⁹¹. Additionally, in their harmonised meta-analysis, Ekelund et al found that in the group of people engaging in 16 MET-h/week of physical activity, those sitting over 8 hours/day had a 12% increase risk of mortality compared to those sitting for less than 4 hours/day¹⁹².

Recommendations for addressing the excess of sedentary time have been included in the physical activity guidelines of Australia¹⁹³ and the United Kingdom¹⁹⁴. For instance, the Australian guideline "Make your move – Sit less. Be active for life!"¹⁹⁵ recommends:

- Minimising the amount of time spent in prolonged sitting.
- Breaking up long periods of sitting as often as possible.

The rationale behind promoting breaks in sedentary time (i.e. "the breaker" in Table 1.7) is based on observational evidence from cohort studies such as the National Health and Nutrition Examination Survey (NHANES) and the Australian Diabetes, Obesity and Lifestyle (AusDiab)^{188, 196}. Interventional studies analysing the effect of frequent interruptions of sitting time (i.e. every 20-30 minutes) and its replacement with short bouts (i.e. <2 minutes) of light or moderate physical activity have shown a positive effect in metabolic biomarkers compared to uninterrupted sitting¹⁹⁷⁻¹⁹⁹. Thus, the focus should not only be on reducing the total amount of sedentary time, but also on the promotion of more often and longer interruptions (breaks) of sedentary bouts. This is particularly relevant for people who spend long hours a day in sedentary behaviours (i.e. public transport drivers, computer-based workplaces, etc.). Some previous evidence suggested that the deleterious effects of sedentary time were independent of the amount of physical activity performed¹⁶⁴. That means that even if a person was engaging in physical activity, if they also accumulated high levels of sedentary time, they would still be prone to the adverse health outcomes associated with high levels of sedentary time. However, in their meta-analysis Ekelund et al. found that the negative effect of sitting time on mortality was accentuated as physical activity decreased and reduced as it improved. For instance, in very inactive people (doing ≤ 5 minutes/day of moderate physical activity), those engaging in over 8 hours of sitting time/ day had a 27% increased risk of mortality compared with those accumulating less than 4 hours/day, while in those engaging in very high levels of physical activity (≥ 60 minutes/day) the difference on mortality risk between the different categories of sedentary time was negligible¹⁹².

On the other hand, studies investigating the replacement of sedentary time with light or MVPA, have suggested possible improvements in cardio-metabolic biomarkers when shifting away from sedentary time²⁰⁰.

Studies characterising the prevalence of sedentary time in the general population have pointed towards high levels of engagement of this behaviour. In regard to device-measured sedentary time, in the 2003–2004 NHANES, Matthews et al. reported that adults aged less than 60 years accumulated around 7.5 hours/day of sedentary time. This figure increased up to 8.41 hours/day in the 60 to 69 age group, and up to 9.28 hours/day in the 70 – 85 age group. The age group showing the lowest level of sedentary time were those in their

thirties²⁰¹. Similarly, a study from the UK reported that 67% of adults aged \geq 60 years accumulated over 8.5 hours/day of sedentary time, with 50% of those older adults accumulating more than 9.5 hours/day²⁰². In terms of self-reported measures of sedentary behaviour, the same study also reported that the percentage of older adults reporting over 4.85 hours/day of leisure time sitting was 66.5%, and that 50% of those adults were reporting more than 6.6 hours²⁰². Similarly, in the 2011-2012 Australian Health Survey concluded that adults spent an average of 39 hours per week (5.6 hours/day) in sedentary activities, with sitting at work a major sedentary activity (10 to 22 hours/ week). TV-time accounted for nearly 13 hours of sedentary time /week, a figure that increased up to 19 hours/ week in people aged \geq 75 years²⁰³.

Overall, physical inactivity and excessive sedentary time are prevalent in the general population, and are associated with several detrimental health outcomes. In addition to promoting physical activity, people should be encouraged to reduce their time in sedentary activities.

Next, I will focus on some of the existing tools for the measurement of these behaviours their advantages and disadvantages, and I will explain the measurements to be used in my research for characterising the level of physical activity and sedentary time.

1.7.3. Measurement of activity behaviours

The measurement of physical activity and sedentary time has gained relevance, due to the several benefits attributed to the recommended engagement in physical activity, and to the detrimental effects of being inactive and sedentary²⁰⁴. As a result of this, the need to find the best assessment tools to measure these behaviours has become evident. Methods to measure physical activity and sedentary time can be divided into subjective (e.g. questionnaires) and device (e.g. accelerometers) methods. Important characteristics to consider when choosing an assessment tool are reliability (i.e. does the test achieve consistent results on different settings, when there is no evidence of change?) and sensitivity (i.e. does the test detect changes over time?)²⁰⁴. Validity (i.e. does the test measure what is intended to measure?) is also an important characteristic to consider²⁰⁴. For physical activity, for instance, an important number of measurements have been validated against the doubly labelled water technique (DLW)²⁰⁵⁻²⁰⁷. DLW is an objective and highly accurate technique that measures total daily energy expenditure and it is considered the gold standard for physical activity measurement²⁰⁸. However, due to its high cost and impracticality in application to the general settings (laboratory-based execution) it is not frequently used in populationbased research²⁰⁸. Direct observation has been used as a criterion for sedentary time²⁰⁹. Feasibility and practicality are also important factors to consider when deciding on a measurement tool²⁰⁴.

In terms of physical activity, components that needs to be considered when measuring this behaviour can be summarised with the FITT principle^{174, 210}:

- Frequency (e.g. 5 days per week),
- Intensity (light, moderate or vigorous),
- Time (e.g. 30 minutes), and

• Type (e.g. aerobic exercise).

It is also important to clarify that the measurement of physical activity differs from the measurement of exercise capacity or physical fitness, since physical activity relates to a behavioural concept whilst cardiorespiratory and physical fitness are related to physiological terms¹⁵⁵.

Similar to physical activity, the characterisation of sedentary time can be summarised with the SITT acronym²¹¹:

- Sedentary behaviour frequency: number of bouts or periods of a certain duration (e.g. number of episodes of sedentary behaviour lasting >20 minutes)
- Interruptions of sedentary behaviour (e.g. number of breaks of the sedentary period, such as standing up and walk or just standing up)
- Time (duration) of the sedentary period (e.g. 30 minutes of uninterrupted sitting, total time of sitting during the day)
- Type or activity behind the sedentary behaviour reported (e.g. was the person watching TV, travelling, or working while being sedentary.

In the following sections, I will provide some definitions and examples of subjective and device-measured assessments to measure physical activity and sedentary time.

1.7.3.1. Subjective techniques

Subjective techniques such as self-report logs, recall questionnaires, and typical week questionnaires, have been largely used in research since they are economic and easy tools to administer^{212, 213}. They also have the advantage of capturing contextual information behind a given activity, for instance sitting while watching TV versus sitting while working or

travelling. This information may have value when developing interventions to target physical activity and sedentary time, since it may help to give directions towards the activities that need to be changed. On the other hand, they may be limited in their measurement properties, i.e. reliability²⁰⁸. Questionnaire-based reports tend to overestimate (or underestimate) the amount of physical activity (or sedentary time) performed^{214, 215}, and they are better at recalling activities at higher intensities²¹⁶. An additional problem that may be encountered with questionnaire-based reports of movement behaviours, is the report of proxy end-points instead of the measurement of the behaviour itself²¹⁷. An example of this are studies reporting only TV-time as a proxy of sedentary behaviour, without taking into account other type of sedentary activities in their assessment.

Questionnaires commonly utilised to quantify physical activity are the International Physical Activity Questionnaire (IPAQ, which also include a sitting time item both for the short and the long version of the questionnaire)²¹⁸, the Minnesota Leisure Time Physical Activity Questionnaire (Minnesota LTPA Q)²¹⁹, the Paffenbarger Physical Activity Index²²⁰, and the 7-days physical activity recall²²¹. Commonly used sedentary time questionnaires include the Past-day Adults Sedentary Time (PAST)²²², the Sedentary Behaviour Questionnaire (SBQ)²²³, the Marshall Sitting Questionnaire²²⁴, the IPAQ (item for sitting time)²¹⁸, and the Measure of Older Adult Sedentary Time (MOST)²²⁵.

1.7.3.2. Device-assessed techniques

A more accurate tool for measuring intensity, patterns of accumulation and total time of physical activity and sedentary time is with devices that measure body position, accelerations, or physiological responses such as inclinometers, pedometers, accelerometers, and multi-sensors devices²⁰⁴. They have become widely used in the last two decades or so, because they overcome some of the most common problems encountered

with questionnaires, such as the lower accuracy, and their reliance on self-reported data^{180,} ²⁰¹. This is because they provide day and time-stamped data, which basically means that they are able to capture the time spent in different movement behaviours and its domains (e.g. intensities and/or positions, patterns of accumulation at certain times of the day). This characteristic allows a more specific and complete examination of physical activity and sedentary behaviour through the profiling of these movement behaviours (simultaneous assessment and analysis)²²⁶. Accelerometer-based activity monitors are an example of the most commonly used objective measurement tools. They measure acceleration changes (or counts) in one or multi-axis planes depending on its technical characteristics. Counts are defined as the sum of raw acceleration outputs at a given frequency, into epochs or periods of time. Accelerometers commonly used in research are the ActiGraph (Pensacola, FL, USA), the Dynaport (McRoberts, The Hague, The Netherlands), the RT6 (StayHealthy, Monrovia, CA, USA), the activPAL (PAL Technologies, Glasgow, UK), the SenseWear (BodyMedia, Pittsburgh, PA, USA), the Axivity AX3 (Open Lab – Newcastle University, Newcastle upon Tyne, UK), and the IDEEA (MiniSun, Fresno, CA, USA). Some of these activity monitors, such as the activPal and the IDEEA are postural-based monitors, which allow them to capture sedentary time in a more accurate way compared to accelerometer "only" monitors.

Limitations recognised for some accelerometers include: missing upper limb movements for those worn at the hip²¹⁷, missing water-based activities for those that are not waterproofed, misinterpreting information of non-wearing as sedentary time²²⁷, misinterpretation of vibration as a movement, not providing contextual information behind activity (sitting while watching TV versus sitting at work), and poor ability to distinguish between standing still and sitting/ lying²¹⁷. However, they are quite easy to use and operate, relatively affordable, and they deliver objective measurements^{217, 228}.

Protocols for best practice have been developed for the use of activity monitors²²⁸. According to the recommendations, physical activity data in adults should be collected for a minimum of 4 to 7 days^{180, 228} and for at least 10 hours/day²²⁸. General recommendations for the measurement of sedentary behaviour may depend on the type of device used. For instance, for activity monitors such as the ActiGraph, wear-time recommendations are as per those for physical activity²²⁹. Recommendations for monitors such as the activPAL, however, suggest to use a 24 hour wearing-time protocol, for a minimum of 7 days²³⁰. The use of these devices in conjunction with participant reported wear time diaries is highly recommended to help differentiate sedentary activities from sleeping or non-wearing period. In addition, non-wear time can be also calculated by either proprietary software or custom-written algorithms. In general, these algorithms determine whether the monitor was or was not worn from periods when little activity or no activity/movement was captured. For instance, in the ActiLife software (for the ActiGraph device) there are three wear time algorithms available. Two of them^{180, 231} are considered "floating window algorithms" and classify non-wear time according to the number of consecutive zeros, or data below the activity threshold, in a certain epoch or pre-defined period of time. These algorithms can also be updated as per user preferences. The third algorithm is a "daily algorithm", which instead of looking at consecutive epochs for patterns, it breaks the file into calendar hours and flags them as valid or invalid based in the validation criteria²³². Custom written algorithms have been also developed for the ActiGraph²²⁷ and for other activity monitors^{233, 234}, including the activPAL²³⁵.

In the following section, I will focus on the activity monitor ActiGraph, since it is the monitor utilised during my research.

1.7.3.2.1. ActiGraph GT3X-BT

The ActiGraph GT3X-BT is a triaxial accelerometer that measures physical activity (including intensity of activity and steps), sedentary time, and sleep. I chose to use this activity monitor because it has been one of the most (or the most) common accelerometers used in research²³⁶, especially in large epidemiological studies including NHANES^{180, 237, 238}, the Women's Health Study²³⁹, the AusDiab study²⁴⁰and the Health Survey of England²⁴¹. In addition, this monitor has been validated in COPD populations against DLW for the measurement of physical activity, being one of the most accurate in detecting different walking speeds²⁴² and in estimating activity energy expenditure^{207, 243}. These points are important for my studies. By choosing to use this activity monitor, it will allow comparisons of the behavioural outputs of my data with those from other populations.

The device detects acceleration in the vertical (for the uniaxial mode), horizontal, and perpendicular axis, which are captured as raw data at rates ranging from 30 to 100 Hz (as per user preferences) and are stored in a raw, non-filtered/accumulated format in the units of gravity²⁴⁴. The device software (ActiLife 6.11.6 Data Analysis Software, ActiGraph Corp, Pensacola, FL USA) summarises the data into counts for a given epoch, with 1-minute a common epoch used in studies²⁴⁵. The ActiLife Software categorises these data into a level of intensity of physical activity according to a given cut-point. Cut-point is a term that refers to the movement-counts output in a certain period of time, for instance, count per minutes (CPM). Several studies have been carried out to determine the appropriate cut-point to categorise the different spectrums of movement intensity^{180, 246-248}. The ActiGraph has 13 cut-points, 3 of them suitable for adults^{180, 246, 247}. One of the most widely used cut-point to classify the levels of activity, and the cut-point to be used in this thesis, was developed by Freedson and colleagues²⁴⁶ (Freedson's 1998 cut-point). Subsequent studies included the categorisation of sedentary time within this cut-point, as activity counts under the threshold

of 100 CPM^{218, 249, 250}. This uniaxial cut-point has been validated both for physical activity¹⁸⁰ and sedentary time^{188, 201} in studies characterising the level of these behaviours and associating the levels of activity and sedentary time with markers of cardiovascular disease. A cut-point devised for the tri-axial data, is the one proposed by Sasaki et al.²⁴⁷ and known as the Vector Magnitude (VM3). This cut-point considers the sum of the three-axis squared, and then takes the square root of this value. Table 1-8 describes the different physical activity intensity spectrums according to the number of CPM in Freedson's 1998 cut-point.

Table 1-8: Activity spectrums and sedentary time based on Freedson's 1998 cut-point.

Sedentary: 0-99 CPM
Light: 100-1951 CPM
Moderate: 1952-5724 CPM
Vigorous and very vigorous: ≥ 5725CPM

From (246). CPM: count per minute. Data obtained from healthy adults.

However, to date there is no consensus on what is the correct cut-point, and several issues have been highlighted²¹⁷. It has been pointed out that due to the dissimilar equations utilised to calculate physical activity energy expenditure from acceleration counts, the cut-points developed by different devices and studies have resulted in widely different cut-points for activity categories, which has hindered comparison between devices and studies²⁵¹. As a result of this limitation, more recent research has suggested that a better estimation of physical activity energy expenditure and posture could be achieved with the utilisation of machine learning algorithms, which through the use of patterns extracted from raw acceleration data are able to derive information about sedentary and active time.^{252, 253}

Some additional issues include²¹⁷:

- Most of the cut-points were developed for middle-aged people, and thus the extrapolation of this information into elderly population is unclear.
- Most of the validation studies were performed in laboratory settings and may not represent activity under free-living conditions.
- Most of the "cut-point studies" were performed using uniaxial accelerometers, thus only giving outputs for the vertical axis. However, a study from 2012²⁵⁴ showed a strong correlation among counts measured in the vertical axis with counts from the VM3.
- There are conflicting data regarding the most suitable cut-point to measure sedentary time in adult populations, with cut-points ranging from 25 to 500 CPM^{209, 255-257}. However, the <100 CPM cut-point is easily comparable with estimates in the literature, since it has been shown to be detrimentally associated with cardiometabolic measures in adults¹⁸⁸, and previously reported in large population studies²⁰¹.

In addition to these issues, it is recognised that the ActiGraph is not as sensitive as posturalbased accelerometers (such as the activPAL or IDEEA) to measure sedentary time²⁰⁹. One of the criteria of being sedentary is to be in a seated, reclined or lying position¹⁷⁸. The inclinometer of the device does not perform as well as those from other devices²⁰⁹. As such, it relies on characterising time as sedentary based on accelerations, which is not as accurate as measuring postural changes.

The ActiGraph can be worn on the waist or wrist depending on the user/researcher preferences, and participants needs to remove the monitor during water-based activities²⁴⁵.

The study and measurement of the movement behaviours of physical activity and sedentary time are evolving and complex area of enquiry, that are closely related to public health messages aiming to reduce the potentially negative impact of these behaviours on chronic diseases. Several methods, including population-specific questionnaires and activity monitors, have been developed to address this. Among the latter, the accelerometer ActiGraph is one of the most widely used in research and in population-based studies. The ActiGraph wGT3X-BT is the activity monitor to be used in my studies.

In the next sections, I review the literature focusing on the role of these behaviours in the management of COPD and bronchiectasis populations.

1.7.4. Characterisation of activity behaviours in obstructive airway disease populations: what is the evidence?

As mentioned in section 1.6. (*Is physical activity a treatable trait in OAD?*), engagement in lower levels of physical activity is a risk factor likely to be encountered in people with OAD. Characteristics and symptoms such as dyspnoea, cough, impaired exercise capacity, sputum production and airflow limitation are common findings among these patients and are likely to have a negative impact on the amount of physical activity and sedentary time in which these patients engage. These impairments are likely to lead to what has been described in COPD as the "dyspnoea inactivity downward spiral"²⁵⁸ (Figure 1-I), a clinical phenomenon where deconditioning is perpetuated and worsened due to a vicious circle of decreased activity and exercise capacity due to a dyspnoea-related avoidance of activity, that negatively impact on symptoms and further impairment of health status.

Figure 1-I: The dyspnoea inactivity downward spiral in COPD

Currently, it is well known that physical impairment is a prominent feature of COPD²⁵⁹. Additionally, the few studies available suggest that the engagement in sedentary time in this population is also likely to be higher than in controls^{165, 260}. However, to what extent this applies to other obstructive airway diseases, such as severe asthma and bronchiectasis, has not received the same degree of attention.

In the following sections, I will be summarising the current evidence of physical activity and sedentary time in severe asthma (Chapter 2), COPD and bronchiectasis. First, the prevalence of these behaviours in COPD will be summarised, followed by the evidence of how these behaviours are associated with several disease outcomes. A similar approach will be followed for the description of these behaviours in bronchiectasis. Evidence of prevalence and associations of these behaviours in adult asthma populations will be thoroughly addressed in Chapter 2.

1.7.5. Physical activity and sedentary behaviour in asthma and severe asthma

The GINA guidelines recommend that people with asthma should engage in regular physical activity for its general health benefits, and as a coadjutant for the management of obesity¹. However, since the study of physical activity and sedentary behaviour in adults with asthma has not been extensively addressed in the literature, important research questions remain unaddressed, such as:

- To what extent adults with asthma may have decreased levels of engagement in physical activity and sedentary behaviour compared to adults without asthma?
- What is the relationship between engagement in these behaviours and asthma symptoms?
- Is the level of engagement in these behaviours is impacted by disease severity?

From the results presented in a systematic review of physical activity in adults and children with asthma conducted in 2012²⁶¹, it could be inferred that adults with asthma engage in lower levels of physical activity than controls. However, since the primary research question of this review was the evaluation of the potential causal relationship between physical inactivity and asthma development, neither the level of this behaviour nor its association with disease outcomes were topics addressed in depth.

In Chapter 2 of this thesis I present a published systematic review where the topics of the level of physical activity and sedentary behaviour in adults with asthma, and the association of these behaviours with disease characteristics are addressed.

1.7.6. Physical activity and sedentary behaviour in COPD

Physical activity in COPD

It has been suggested that intrinsic limitations of the use of self-report methods to measure physical activity are that they do not perform very well in recalling lighter intensities of activity²⁶². Considering that people with COPD are likely to engage in both rather lighter intensity of activity and lower levels of activity, in this section I will focus exclusively on studies using physical activity monitors (i.e. accelerometers, pedometers) to measure this behaviour in people with COPD.

1.7.6.1. Prevalence of physical activity in COPD

In the last 20 years, the study of device-measured physical activity in COPD populations is a subject that has received considerably more research interest compared to other $OAD^{165, 259}$, ²⁶³⁻²⁶⁷. In 1997, Schönhofer et al. described for the first time objectively measured levels of physical activity using a pedometer²⁶⁷. The authors found that the mean ± standard deviation (SD) daily movement count in the COPD group compared to controls was 3781 ±2320 versus 8590 ± 4060, respectively (significance not reported). However, movement counters or

pedometers are not able to provide information on time spent at different intensity levels, nor discriminate between different activities^{267, 268}. In 2005, Pitta and colleagues added to this evidence base comparing the amount of active-time during the day, and measurement of the intensity of activity between people with COPD and controls¹⁶⁵. Using a triaxial accelerometer (DynaPort Activity Monitor), they reported that people with COPD (mean \pm SD FEV₁43 \pm 18% predicted) accumulated 45.6 % less minutes per day walking and that their intensity of walking (intensity levels) was 25% less intense than controls (*p* < 0.0001 both values).

Since this publication, there has been a growing number of studies measuring physical activity in COPD and examining associations with different diseases outcomes. In their systematic review, Vorrink et al. found that physical activity impairment was a common finding in people with COPD, and that compared to controls, patients have lowers levels of activity in terms of duration, intensity and activity counts²⁶³. The authors also found that COPD severity (measured by the GOLD airflow limitation parameters) was only moderately correlated with the decrease in physical activity²⁶³. However, it is unclear whether with the newly proposed ABCD assessment tool, this finding would hold true. Studies using a multisensor activity monitor (SenseWear) in COPD populations across different GOLD categories have reported that physical activity (measured as steps, physical activity levels or time in moderate-intensity activity) is progressively reduced in patients from GOLD II^{266, 269}, and that this reduction is more accentuated in activities of moderate intensity than in steps²⁶⁹. For instance, Troosters et al. found that, compared to controls, people categorised as GOLD II walked 30% less, but spent 59% less time engaged in moderate physical activity (p < 0.02 for the difference)²⁶⁹. In a meta-analysis of steps/day, Saunders et al. reported a pooled mean of 4579 (95% CI 4310 - 5208) steps/day for individuals with COPD (I^2 =95%, $P \le$ 0.0001). Fifty-five percent of the studies included in this review had a $FEV_1\%$ predicted lower

than 50%²⁷⁰. A study using ActiGraph GT3x in COPD participants (mean FEV₁% predicted of 55%), reported a mean (SD) of 4634 \pm 2697 steps/day, and a median [IQR] of 12 (4–26) minutes of MVPA/day¹⁶⁸.

1.7.6.2. Associations with disease outcomes

There are convincing data regarding the positive impact of physical activity on several important clinical end-points in COPD populations²⁷¹. Its positive impact on mortality, exacerbations and health status, among other outcomes, has highlighted the importance of characterising this behaviour, and has guided treatment approaches to increase physical activity in COPD populations²⁷¹.

Longitudinal studies have showed that lower levels of physical activity are strongly related to increased risk of acute exacerbations resulting in hospitalisation^{272, 273}, length of time until first admission for exacerbation²⁷⁴, and all-cause mortality in COPD patients^{264, 272, 274}.

Cross-sectional studies have also found that higher levels of physical activity were positively associated with clinical outcomes, such as exercise capacity^{165, 259, 265}, quadriceps muscle strength and mass ^{165, 265, 275} and health status^{265, 276}; and negatively associated with dynamic hyperinflation¹¹⁴, comorbidities²⁷⁷ (such as metabolic syndrome²⁷⁸, and type-2 diabetes²⁷⁶), systemic inflammation^{265, 266, 279}, and symptoms²⁷¹.

Sedentary time in COPD

Despite the well-recognised benefit of physical activity in people with COPD, it is likely that some patients may struggle to engage in the recommended levels of physical activity due to the clinical impairments associated with the disease. This difficulty becomes even more pronounced in people with severe disease, especially in those people who need domiciliaryoxygen therapy to maintain their oxygen levels. Symptoms such as high levels of dyspnoea even at rest, and general deconditioning also increase the difficulty to engage in physical activity. Along with encouraging the need to engage in at least some physical activity, the reduction of time spent in sedentary behaviours and the improvement of its patterns of accumulation (more often interruptions of sedentary time) could be seen as an achievable message for people with COPD. As sedentary time is closely and negatively correlated with light physical activity, a decrease in the former behaviour may be translated into a higher engagement in light physical activity²⁸⁰. In the following sections, I will be presenting the evidence of the study of sedentary behaviour in this population, and how it is associated with some health outcomes.

1.7.6.3. Prevalence of sedentary time in COPD

Sedentary time has not been examined in COPD as widely as physical activity, neither with devices nor with questionnaires. Nevertheless, some earlier studies also included measures of sedentary time. For instance, in 2005 Pitta et al. (using a triaxial accelerometer) reported that people with COPD engaged in more sedentary time than healthy controls (sitting time: 374 ± 139 versus 306 ± 108 minutes/ day and lying time 87 ± 97 versus 29 ± 33 minutes a day, respectively p < 0.004 both). Similarly, a study comparing the levels of sedentary time between people with COPD and their partners found that COPD participants engaged in significantly higher levels of sedentary time (median [IQR]= 616 [566-663] versus 558 [498-606], p < 0.0001, respectively)²⁶⁰. Lastly, Furlanetto et al. reported that participants with COPD spent a median [IQR] of 7.52 [5.63–8.65] hours/day in a combination of sitting and lying position²⁸¹. Furthermore, Hartman et al. reported that people with COPD (53% of the sample categorised as GOLD I and II) spent almost 9 hours per day sitting, and despite that the participants with COPD GOLD stage IV sat for about 40 minutes extra than people with COPD stage I or II, the amount of time spent sitting was not significantly different between

the different GOLD stages²⁸². It is worth noting that none of the studies mentioned above used postural-based accelerometers, and in one of them measures of energy expenditure (hours/day engaging in <1.5 and < 2 METs) were also reported as sedentary time variables²⁸¹.

1.7.6.4. Associations with disease outcomes

Very few studies have assessed the impact or association of sedentary time on disease outcomes in COPD. However, some data point towards a detrimental effect in engaging in higher levels of sedentary time. For instance, Furlanetto et al. found²⁸¹ that spending >8.5 hours /day engaged in activities at < 1.5 MET was an independent predictor of mortality at follow-up [median (IQR) 62 (43–88) months of follow-up], even after adjusting for MVPA among other variables [hazard ratio (95%CI) 4.09 (1.90-8.79), *p* < 0.001]. The authors also concluded that none of the remaining sedentary variables assessed (hours/day spent: sitting, lying, sitting, and lying, in "activities" at < 2 MET) presented acceptable discrimination for the mortality analysis (low sensitivity and specificity). In their cross-sectional study, Hartman et al. reported that a more positive perception of treatment control, higher introjected regulation in exercise, not using sleep medication, and use of long-term oxygen therapy were independently associated with longer sitting time, measured with an accelerometer²⁸².

People with COPD engage in lower device-measured physical activity levels compared to people without respiratory diseases. This decrease can be observed from early stages of the disease (GOLD II), and it is associated with important disease outcomes and mortality. Sedentary behaviour has not been widely characterised, but there are data suggesting a deleterious effect on all-cause mortality in COPD participants. No studies have compared COPD physical activity levels and sedentary time with other respiratory diseases.

1.7.7. Physical activity and sedentary time in bronchiectasis

Exercise training (the subset of physical activity that is planned, structured, and repetitive¹⁵⁵) in bronchiectasis has been associated with short and middle term positive respiratory outcomes, and less exacerbations over a one year period²⁸³. However, compared to COPD, the study of physical activity and sedentary time in bronchiectasis are areas that have not received the same level of research interest. As a result, it is unclear if the known benefits of structured exercise impact on the level of physical activity in people with bronchiectasis. In the following sections I will describe the evidence reporting on the levels of these behaviours in bronchiectasis populations.

Considering the scarcity of data on these topics, eligible studies will be reported regardless of the type of activity or sedentary measurement utilised (device-measured/ questionnaires).

Physical activity in bronchiectasis

1.7.7.1. Prevalence of physical activity in bronchiectasis

Studies measuring the level of physical activity in people with bronchiectasis have suggested a lower engagement in this behaviour, compared with people without the disease²⁸⁴⁻²⁸⁷. For instance, Gale et al.²⁸⁵ found that compared to age-matched healthy controls, people with bronchiectasis reported less subjectively measured physical activity (34.6 ± 6 versus 40.8 ± 2.2 METs, (p = 0.019), respectively). De Camargo et al. also compared the levels of physical activity between a bronchiectasis and a control population with a pedometer, finding a similar trend towards lower levels of physical activity in people with bronchiectasis (mean difference (95%CI) 3,332 (1,758-4,890) steps/day, p < 0.001)²⁸⁷. Some studies characterised the level of physical activity in bronchiectasis without comparisons with control groups^{284, 286}. For instance, Bradley et al.²⁸⁴, using the ActiGraph GT3X+, reported that people with bronchiectasis accumulated 25 ± 20 minutes/day of MVPA, and 6001 ± 2780 steps/day. Similarly, De Camargo et al. reported a median [IQR] of 8753 [5158 -12,632] steps/day²⁸⁶. Comparisons by disease severity showed that people with less severe disease have better physical activity levels. For instance, the mean \pm SD of steps/day for people with mild disease was 6898 \pm 2783 compared with 5137 \pm 2532 for people with moderate to severe disease (p = 0.017)²⁸⁴.

1.7.7.2. Associations with disease outcomes

In their cross-sectional study, Bradley et al.²⁸⁴ reported that daily MVPA and steps/day were significantly associated with functional exercise capacity (measured by the modified shuttle test), explaining 25.8% and 32.2% of the variance in MVPA, respectively (p < 0.001). Significant associations were also reported for daily activity energy expenditure and the bronchiectasis quality of life questionnaire (QOL-B) for the respiratory symptoms domain (negative association), and for the MVPA in bouts greater than 10 minutes with the QOL-B social functioning domain (positive association)²⁸⁴. Similarly, a positive significant association between physical activity and exercise capacity was reported in other studies^{286, 287}, as a negative association was reported for dyspnoea score²⁸⁷. No significant association were found between physical activity and lung function (FEV₁% predicted)²⁸⁴ nor quadriceps muscle strength²⁸⁷.

Sedentary time in bronchiectasis

1.7.7.3. Prevalence of sedentary time in bronchiectasis

To date, only one study has reported on sedentary time in a bronchiectasis population. Bradley et al. reported that people with bronchiectasis accumulated a mean 634 ± 77 minutes/day or approximately 10.6 hours/day. The authors utilised the ActiGraph GT3X+ to measure this behaviour²⁸⁴.

1.7.7.4. Associations with disease outcomes

Bradley et al. found that sedentary time was only significantly associated with the Marcus decisional balance questionnaire. No associations were found for sedentary time and clinical respiratory outcomes such as exercise capacity, lung function or health status²⁸⁴.

The measurement of physical activity in bronchiectasis is considerably less researched than in COPD. Data available suggest lower engagement in this behaviour compared to people without respiratory disease, although the degree of reduction seems to be less severe compared to people with COPD. Very few studies have described associations with disease characteristics, with exercise capacity the clinical outcome displaying the strongest association. Measures of sedentary time are scarce.

1.8. Summary Part 2: movement behaviours section

Physical activity and sedentary behaviour are distinct behaviours independently associated with several health outcomes, including the incidence and prognosis of cardiovascular diseases, type-2 diabetes mellitus, osteoporosis, and breast and colon cancer. Considered important modifiable risk factors, several countries, including Australia, have released public health recommendations aimed at promoting the engagement of healthy-enhancing levels of physical activity, while discouraging high and continuous engagement in sedentary time. The measurement of these behaviours is an evolving area, and nowadays the use of devices to quantify the different levels of these behaviours has become more accessible and common than in the past. In COPD, physical activity is very well characterised. The engagement in low activity levels has been regarded as a predictor of exacerbation resulting in hospitalisation and increasing the likelihood of all-cause mortality in this disease. As a result, clinical guidelines and research initiatives are now testing approaches to increase physical activity levels in this population. Physical activity levels in bronchiectasis have been considerably less studied, but evidence suggests that these sit at a midpoint between values found in people without respiratory diseases and people with moderate to severe COPD. Sedentary behaviour in both diseases has been considerably less characterised, although in COPD studies have suggested a higher engagement compared to controls, and a detrimental association between sedentary time and mortality risk.

In section 1.9 of this chapter, I will present the motivation, aims and hypotheses of this thesis. In Chapter 2, I will provide a thorough review of the literature on physical activity and sedentary time in asthma.

1.9. Motivation for the present thesis

In section 1.7.4. (Characterisation of activity behaviours in obstructive airway disease populations: what is the evidence?), I reviewed the available literature and reported that physical activity impairment is a common finding in COPD and bronchiectasis. Similarly, these populations, especially COPD, seem to engage in high levels of sedentary time, although this finding requires further research. Higher levels of activity and lower levels of sedentary time are associated with important disease outcomes in COPD. In bronchiectasis, less data are available, but higher levels of physical activity have been associated with better exercise capacity, health status, and less dyspnoea. People with severe asthma are likely to be affected by similar activity impairment and high engagement of sedentary time as people with other obstructive airway diseases are. However, these behaviours have not been widely addressed in severe asthma. Similarly, associations of these behaviours with clinical and biological outcomes of the disease have not been explored. For this reason, it is unclear how the levels of physical activity and sedentary time in people with severe asthma compares to those found in other obstructive airway diseases, such as COPD and bronchiectasis. As a result, it is also unclear whether lower physical activity levels are a prevalent characteristic in people with obstructive airway diseases, and therefore a risk factor that should be addressed jointly, and not only in COPD.

Lastly, it is unclear if shared pulmonary and extrapulmonary characteristics of these diseases are associated with the level of physical activity performed, nor how physical activity is interrelated with other extrapulmonary outcomes in their relationship with health status in bronchiectasis and severe asthma.

If physical activity impairment (and sedentary time) in obstructive airway diseases is to be considered a treatable trait, these are questions that need to be addressed.
In this thesis, I examine the levels of physical activity and sedentary time in severe asthma and their association with disease clinical and biological characteristics, and the level of physical activity in severe asthma compared to diseases such as bronchiectasis and COPD. Furthermore, I explore the relationship of this behaviour with shared pulmonary and extrapulmonary characteristics of these diseases, and its relationship with health status.

In order to frame the study of physical activity and sedentary time in severe asthma, in the next chapter (Chapter 2) I will first provide a thorough revision of the literature on the prevalence of these behaviours in adults with asthma (including people with different disease severity), and how these behaviours relate with different asthma outcomes. In the first primary data chapter of my thesis (Chapter 3), I characterise the level of physical activity and sedentary time in a severe asthma population compared to healthy controls, and I assess the association of these behaviours with different clinical and biological outcomes of the disease. In Chapter 4, I compare the levels of physical activity found in severe asthma to diseases such as bronchiectasis and COPD, followed by an analysis of the association of this behaviour with shared characteristics of these diseases as an OAD group. Lastly, in Chapter 5 I examined the interrelationship between health-related quality of life, physical activity and other extrapulmonary outcomes that have been previously associated with health status in asthma, COPD and bronchiectasis. This last study was carried out in a severe asthma and bronchiectasis population with similar clinical characteristics and levels of physical activity.

1.10. Aims and Hypotheses:

The principal aim of this thesis is to assess whether physical activity impairment is a prominent characteristic in severe asthma and bronchiectasis, as it is in other obstructive airway diseases such as COPD.

I hypothesised that lower levels of physical activity are a characteristic shared by individuals with the obstructive airway diseases of asthma, COPD and bronchiectasis.

Specific aims and hypotheses

Aim 1: To update and synthesise the evidence in relation to the prevalence of physical activity and sedentary time in adults with asthma (Chapter 2).

Hypotheses 1: Adults with asthma will present lower levels of physical activity and higher engagement in sedentary time than adults without asthma.

Aim 2: To synthetise the evidence on the associations of physical activity and sedentary time with clinical and biological outcomes in people with asthma (Chapter 2).

Hypotheses 2: Better physical activity and sedentary time parameters will be associated with better clinical and biological markers of asthma in adults.

Aim 3: To characterise the level of physical activity and sedentary time in a severe asthma population, compared to age and sex-matched controls (Chapter 3)

Hypothesis 3: People with severe asthma will present lower levels of physical activity and higher levels of sedentary time than people without respiratory diseases.

Aim 4: To assess the associations of physical activity and sedentary time with clinical and biological characteristics of the severe asthma population (Chapter 3)

Hypothesis 4: In people with severe asthma, higher physical activity and lower sedentary time will be associated with better clinical and biological asthma characteristics.

Aim 5: To characterise the prevalence and intensity of physical activity in people with severe asthma and bronchiectasis, compared to people without respiratory disease and to people with moderate-severe COPD (Chapter 4).

Hypothesis 5: People with bronchiectasis and severe asthma will present lower levels of physical activity compared to people without respiratory disease, but their degree of physical activity impairment would not be as severe as that found in participants with moderate to severe COPD.

Aim 6: To test whether physical activity is associated with shared clinical and biological characteristics found in OAD (Chapter 4).

Hypothesis 6: In people with obstructive airway diseases, physical activity will be associated with shared clinical disease characteristics.

Aim 7: To explore the interrelationships between several extrapulmonary outcomes, including physical activity, comorbidities, skeletal muscle function, among others with health-related quality of life in an obstructive airway disease population composed of participants with severe asthma and bronchiectasis (Chapter 5).

Hypothesis 7: In people with severe asthma and bronchiectasis, better extrapulmonary characteristics, such as higher physical activity, fewer comorbidities, and better skeletal muscle function, will be associated with improved health-related quality of life in participants with severe asthma and bronchiectasis.

1.11. Study design and methods of primary data studies

Table 1-9: Overview of the design and methods of papers included as part of this thesis.

Short title and chapter	Design	Participants	Assessments	Data analysis
Physical activity	Cross-sectional	61 adults with severe asthma	Demographic features, anthropometric measures	Differences between groups:
and sedentary	study,	and 61 sex- and age-matched	(weight, height, BMI), clinical characteristics	Student t test, Wilcoxon rank sum
time in severe	descriptive	participants without	including smoking history, medical history,	test.
asthma	and comparative	respiratory disease	medication use, severe exacerbations, atopy,	Associations between variables:
(Chapter 3)			anxiety and depression scores (HADS).	simple and multivariable linear
			Assessments included in analyses: lung function	regression analyses (movement
			(spirometry), functional exercise capacity	behaviours as independent
			(6MWD), systemic (hs-CRP) and airway	variables), logistic regression
			inflammation (eosinophils and neutrophils in	analyses, Spearman rank
			sputum, Feno levels), asthma controls (ACQ),	correlation and collinearity
			quality of life (AQLQ), physical activity and	analyses.
			sedentary time (ActiGraph wGT3X-BT).	
			Data collection: Participants from this study were	
			recruited concurrently between March 2014 and	
			April 2017.	

and within
nalysis of
/allis, Chi-
ropriate.
variables and
imple and
ion models
dependent
an rank
/allis ropr varia ion r dep an r

Short title and	Design	Participants	Assessments	Data analysis
chapter				
Physical activity	Cross-sectional	70 adults with severe asthma	Demographic features, anthropometric measures	Differences between groups:
and health status	study,	and 61 adults with	(weight, height, BMI), clinical characteristics	Student t test, Wilcoxon rank sum
in obstructive	descriptive and	bronchiectasis	including smoking history, medication use,	test. Associations between
airway diseases	comparative		functional exercise capacity (6MWT), lung	variables and interaction effects:
(Chapter 5)			function (spirometry). Assessments included in	simple and multivariable regression
			analyses: health-related quality of life (SGRQ),	models (SGRQ total score and by
			physical activity (ActiGraph wGT3X-BT),	domain score as dependent
			comorbidities (CCI score, osteopenia,	variable).
			osteoporosis), anxiety and depression symptoms	Multiple imputation by chained
			(HADS score), systemic inflammation (hs-CRP),	equations analyses.
			skeletal muscle function (isometric leg strength	
			and presence of sarcopenia).	

BMI: body mass index; HADS: Hospital Anxiety and Depression scale; 6MWD: 6-minute walked distance; hs-CRP: high sensitivity C-reactive protein; ACQ: Asthma Control Questionnaire, AQLQ: Asthma Quality of Life Questionnaire; SGRQ: Saint George Respiratory Questionnaire; mMRC: modified Medical Research Council scale; CCI: Charlson Comorbidity Index.

2. Chapter 2: Physical activity and Sedentary Time in Adults with Asthma

This chapter has been published in JACI: In Practice.

Citation: Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of

associations of physical activity and sedentary time with asthma outcomes. J Allergy Clin

Immunol Pract. 2018 Mar 3. pii: S2213-2198(18)30127-2. doi:10.1016/j.jaip.2018.02.027

Original Article

A Systematic Review of Associations of Physical Activity and Sedentary Time with Asthma Outcomes

Laura Cordova-Rivera, BPhty(Hons)^{a,b,c}, Peter G. Gibson, MBBS^{a,b,c,d}, Paul A. Gardiner, PhD^{e,f}, and Vanessa M. McDonald, PhD^{a,b,c,d} Newcastle, New South Wales; and Woolloongabba, South Brisbane, Queensland, Australia

What is already known about this topic? Compared with controls, subjectively measured physical activity seems to be reduced in adults with asthma. Higher levels of physical activity might have a beneficial impact on asthma.

What does this article add to our knowledge? Physical activity is reduced in adults with asthma, especially in females and older people with asthma. Sedentary time did not differ between people with and without asthma. Higher levels of activity are associated with better asthma outcomes.

How does this study impact current management guidelines? These results suggest that addressing inactivity and sedentary time may be a potential nonpharmacological approach in the management of asthma. Disease severity, sex, and age should guide these approaches.

An invited short summary of this article has been highlighted in the "Latest Research" section of the American Academy of Allergy, Asthma & Immunology (AAAAI) website

See **Appendix I** for the published article and supplementary data.

See Appendix II for the summary published in the AAAAI website.

Overview of this Chapter

Lower levels of physical activity and/or high engagement in sedentary behaviour are common findings in COPD and bronchiectasis, and these behaviours seem to be associated with important adverse disease outcomes. Chapter 1 of this Thesis reviewed these associations for COPD and bronchiectasis, however, literature on these behaviours in people with asthma has not been extensively reviewed, and thus it is unclear whether they are prevalent in this group.

To address this gap, I aim to update and synthesise the evidence in relation to the prevalence of physical activity and sedentary time in adults with asthma and report the associations of these behaviours with clinical and biological outcomes in people with asthma.

I hypothesised that adults with asthma will present lower levels of physical activity and higher engagement in sedentary time than adults without asthma, and that better physical activity and sedentary time parameters will be associated with better clinical and biological markers of asthma in adults.

This chapter contains the published version of the literature review, which has not been updated since publication.

2.1. Abstract

Background: Physical inactivity and high sedentary time are associated with adverse health outcomes in several diseases. However, their impact in asthma is less clear.

Objective: We aimed to synthesise the literature characterising physical activity and sedentary time in adults with asthma, to estimate activity levels using meta-analysis, and to evaluate associations between physical activity and sedentary time and the clinical and physiological characteristics of asthma.

Methods: Articles written in English and addressing the measurement of physical activity or sedentary time in adults \geq 18 years old with asthma were identified using four electronic databases. Meta-analysis was used to estimate steps/day in applicable studies.

Results: There were 42 studies that met the inclusion criteria. Physical activity in asthma was lower compared to controls. The pooled mean (95%CI) steps/day for people with asthma was 8390 (7361, 9419). Physical activity tended to be lower in females compared with males, and in older people with asthma compared with their younger counterparts. Higher levels of physical activity were associated with better measures of lung function, disease control, health status, and health care use. Measures of sedentary time were scarce and indicated a similar engagement in this behaviour between asthma participants and controls. High sedentary time was associated with higher health care use, and poorer lung function, asthma control and exercise capacity.

Conclusions: People with asthma engage in lower levels of physical activity compared to controls. Higher levels of physical activity may positively impact on asthma clinical outcomes. Sedentary time should be more widely assessed.

2.2. Introduction

Asthma is an obstructive airway disease that causes symptoms of dyspnoea, wheezing, and chest tightness. These symptoms, and the fear of provoking exercise induced bronchoconstriction (EIB), may have a negative impact on the engagement in physical activity in people with asthma^{1, 288, 289}.

Physical activity and sedentary time have been widely studied in the general population¹⁶⁰ and in chronic obstructive pulmonary disease (COPD). People with COPD are considerably less active and more sedentary than people without respiratory conditions^{165, 259}. Furthermore, inactivity in COPD is associated with more exacerbations resulting in hospitalisation²⁷³, a reduced time to readmission²⁷², and increased all-cause mortality^{264, 272,} ²⁷⁴. As a result, there are well-established exercise programmes for people with COPD that seek to address physical inactivity^{89, 126}. In asthma however, the role of physical activity and sedentary time is less clear¹⁶⁶, and thus guidelines and interventions to target these behaviours in this population are limited.

In a prior systematic review in adults and children, Eijkemans et al. suggested that people engaging in higher levels of physical activity might have a lower risk of asthma incidence²⁶¹. In adults with asthma, they also found a trend towards lower levels of physical activity compared to controls²⁶¹. However, none of the included studies used objective measures (accelerometry) to quantify physical activity in adults, and sedentary time was not addressed. Another review found that children and adolescents with and without asthma engage in a similar amount of objectively measured physical activity²⁹⁰. Despite this evidence, there are no reviews of the literature that have evaluated the prevalence of sedentary time in adults with asthma, nor reviewed the use of accelerometry to quantify physical activity and sedentary time in this population. Additionally, the degree to which the level of physical

activity and sedentary time impact on the airway symptoms or clinical outcomes in adults with asthma has not been reviewed.

Our aim therefore is to update and synthesise the evidence in relation to the prevalence of physical activity and sedentary time in adults with asthma. We conducted a meta-analysis of studies reporting steps/day in people with asthma and sought to evaluate the associations of these behaviours with the clinical and physiological characteristics of the disease.

2.3. Methods

2.3.1. Literature search

Articles written in English and addressing the measurement of physical activity or sedentary time in adults (≥18 years) with asthma were identified by a comprehensive search using the Medline, Embase, PEDro, and Cochrane databases. Search was conducted in April 2017, and updated in October 2017, and included all articles published until the search date.

Eligible studies were those that: examined the prevalence and patterns of these behaviours in asthma populations, or studies analysing the association of these behaviours with clinical or biological markers of the disease. We did not include a filter for study design. Details of the search strategy are provided in Table 2-1.

	Search strategy: (#1) AND (#2 OR #3)
#1	Asthma* or wheez* or "bronchoconstriction"
#2	"physical activity" or ("physical exercise" or "exercise") or "walking" or "motor activity"
#3	 ("sedentary behaviour" OR "sedentary behavior" OR "sedentary time") OR ("sedentary lifestyle") OR ("internet time") OR ("computer time") OR ("television watching" OR "television viewing" OR "television time") OR ("TV watching" OR "TV viewing" OR "TV time") OR ("screen time") OR "sitting time" OR "reading time"

Table 2-1: Search Strategy.

2.3.2. Analysis

Statistical analysis was performed using STATA 13 (Stata Corp., College Station, TX, USA). The continuous outcome (mean steps/day) from relevant studies²⁹¹⁻²⁹⁷ was pooled using the random-effect model. Authors of three studies were contacted and provided further details of their results^{291, 295, 296}.

2.4. Results

The initial search yielded 2803 references. A flow diagram²⁹⁸ of the literature search is provided in Figure 2-A.

Figure 2-A: PRISMA Flow Diagram Literature search.

Updated 31 October 2017

We identified 42 eligible studies investigating physical activity and/or sedentary time in adults with asthma. Population characteristics are presented in Table 2-2. From these studies, 18 compared the level of these behaviours in asthma to a control group^{291-294, 296, 299-} ³¹¹. Table 2-3 summarises the physical activity measurements utilised in these 18 studies. Three studies^{295, 297, 312} without a control group were also included in Table 2-3 in order to provide further details of the activity monitors used. Associations with disease characteristics were assessed in 24 studies^{291-293, 296, 297, 300, 301, 305, 307, 311-325} (Table 2-4). Additionally, two studies reported physical activity as a confounder of body mass index (BMI)^{326, 327}, and two studies reported physical activity prior to a randomised controlled trial (RCT) exercise intervention^{295, 328}. In five studies, the association between current asthma and different levels of physical activity was assessed³²⁹⁻³³³. In general, the studies were quite heterogeneous in terms of the population and assessments of activity/sedentary time. Studies included 193,821 asthma participants and 1,417,540 controls. Most participants were women, and in 31% of the studies the mean age was under 45 years old. Twenty-three studies used a self-reported asthma diagnosis^{299-305, 308, 310, 311, 314, 315, 317-319, 321, 322, 326, 329-333}. Disease severity or level of control was reported in 15 studies, and populations included people with mild, moderate, and severe asthma^{291-293, 295-297, 306, 307, 311, 319, 320, 323, 326-328}.

Asthma participants							Controls		
Cross-sectional studies	5								
	Country	Ν	Female (%)	Age	Current smoking	Disease severity	n	Female	Age
					(%)	(%)		(%)	
Bacon 2015 ³¹³	Canada	643	60	53.4 ± 15.4	8.7	n/r	n/a	n/a	n/a
Bahmer 2017 ²⁹¹	Germany	146	51 Severe	55.5	22	43.1	29	38	42.1
			53 Mild to mod.	48.1	24	56.8			
Beckett 2001 ³²⁹	USA	4547	52	18 to 30	41.1	n/r	4131	55.2	18-30
Barros 2017 ³²⁶	Portugal	2578	62	20 to >85	21.4	Current: 44	30066	52.4	20 to >85
						Persist: 38			
						Severe:18			
Bruno 2016 ²⁹²	Italy	24	66	38.5 ± 14.2	n/r	Mild to mod.	18	55	43.1±14.3
Chen 2001 299	Canada	1070	61.7	12 to >70	26.7	n/r	15743	55	12 to >70
Cordova-Rivera 2017 ²⁹³	Australia	61	52.5	59 [43 – 68]	6.6	Severe	61	52.5	54 [34 – 63]
Doggett 2015 300	Canada	1830	69.2	20 to >55	33.1	n/r	18978	54.4	20 to >55
Dogra 2006 315	Canada	11243	62	40 to 44	n/r	n/r	n/a	n/a	n/a
Dogra 2008 302	Canada	1772 ^{\$}	63 ^{\$}	45 to 79	n/r	n/r	19864	57	65 to 79
		3123^	68^						
Dogra 2009 ³⁰¹	Canada	6835	62	20 to 64	28.5	n/r	78051	51	20 to 64
Ford 2003 ³⁰³	USA	12489	64	18 to >70	n/r	n/r	147742	48.9	18 to >70
Ford 2004 ³¹⁷	USA	12111	63.7	44.2 (0.3)	26	n/r	n/a	n/a	n/a
Grammatopoulou	Greece	100	79	n/r	20	Mild: 58	n/a	n/a	n/a
2010 ³²⁷						Mod:32			
						Severe: 10			

Table 2-2: Demographic characteristics of studies included.

likura 2013 ³²⁵	Japan	437	53.3	64 [51–74]	7.1	n/r	n/a	n/a	n/a
	Country	N	Female (%)	Age	Current smoking	Disease severity	n	Female	Age
					(%)	(%)		(%)	
Kilpelainen 2006 ³³³	Finland	10023	61	18-25	3.4 ^β	n/r	n/a	n/a	n/a
Liang 2015 ³⁰⁴	Australia	723	51 ^β	18 to 29	2.7	n/r	1891	51 ^β	18 to 29
Ma 2016 ³²⁸	USA	330	10.6	47.6 ± 12.4	5.8	UA	n/a	n/a	n/a
Malkia 1998 ³⁰⁵	Finland	178	59	30 to 89	n/r	n/r	7015	30 to 89	n/r
Mancuso 2007 ³²⁰	USA	258	75	42 ± 12	11	Mild to mod	n/a	n/a	n/a
Moore 2015 ²⁹⁴	Canada	16	38	27.8 ± 6.1	n/r	n/r	16	50	26.6 ± 5.2
Ramos 2015 ³⁰⁶	Brazil	20	70	44 ± 6.0	n/r	Mod to severe	15	93	39 ± 6.0
Ritz 2010 ³⁰⁷	USA	20	70	28 ± 6.8	n/r	Mod	20	70	31.6 ± 5.9
Scott 2013 ²⁹⁵	Australia	14	78.6	43.3 [37-7.8]	30.8	Mild inter: 8 Mild persist:23 Mod: 54 Severe: 15	n/a	n/a	n/a
Strine 2007 ³²²	USA	11962	65.5	18 to >75	23.6	n/r	n/a	n/a	n/a
Teramoto 2011 ³⁰⁸	USA	880	57.2	18 to >70	n/r	n/r	2960	n/r	18 to >70
Tsai 2011 ³⁰⁹	Taiwan	27	44	60.8 ± 10.2	11	n/r	27	37	56.8 ± 1.1
Vancampfort 2017 ³¹⁰	LMICs	11857	50.8 ^β	18 to >65	n/r	n/r	216167	50.8 ^β	n/a
Van 't Hul 2016 ²⁹⁶	The Netherlands	226	62	47.3 ± 15.3	n/r	CA:17 PC:18 UA: 65	201	75.6	42.3 ± 16.3

2013 ³¹¹ UA:78 85 54 ± 21.5 38.4			
Vermeulen Belgium 20 65 39.0 ± 11.9 n/r CA: 10			
2016 ²⁹⁷ PC: 10 UA: 80	n/a	n/a	n/a
Vogt 2008 ³³² USA 311 72.3 18 to > 75 n/r n/r	4420	n/a	n/a
Westermann USA 258 75.9 42 ± 12 n/r Mild to mod 2008 ³²³ Mild to mod <td< td=""><td>d n/a</td><td>n/a</td><td>n/a</td></td<>	d n/a	n/a	n/a
Yamasaki Japan 18 55.6 63 ± 11 0 n/r 2017 ³¹² <td>n/a</td> <td>n/a</td> <td>n/a</td>	n/a	n/a	n/a
Yawn 2015 ³²⁴ USA 533 76 40.6 15.4 n/r	n/a	n/a	n/a
Zahran 2013 ³³⁰ USA 74779 76 18 to >65 19.5 n/r	869519	51.3	18 - 65+

Longitudinal studies

	Country	Follow-up	n	Female (%)	Age*	Current	Disease severity	n	Female	Age*
						smoking (%)	(%)		(%)	
Bedard 2017 ³³¹	France	Up to 11 years	15353	100	59.2 ± 6.3	8.5	n/r	n/a	n/a	n/a
Brumpton 2017 ³¹⁴	Norway	Mean 11.6 years	1329	51.6	44.1 ± 12.9	25.1	n/r	n/a	n/a	n/a
Fisher 2016 ³¹⁶	Denmark	Mean 16 years	1347	61.8	57.1 ± 4.5	34.9	n/r	n/a	n/a	n/a
Garcia-Aymerich 2007 ³¹⁸	Denmark	Mean 11 years	153	n/r	52.4 ± 11.6	n/r	n/r	n/a	n/a	n/a

Garcia- Aymerich	USA	Mean 2 years	2818	100	62.7 ± 6.9	5.8	Mild inter: 20.3	n/a	n/a	n/a
2009 ³¹⁹							Mild persist:35.6			
							Mod: 34.6			
							Severe: 9.5			

Age reported as mean± SD or (SE), or median [IQR], or range. # Cross-sectional data from a longitudinal cohort. B: % reported for the whole sample; & only participants with asthma at baseline. \$ Values for older adults; ^ values for middle aged adults, * results reported correspond to cross-sectional data. n/a: not assessed; n/r: not reported; Inter: intermittent; Persist: persistent; Mod: moderate asthma; CA: controlled asthma; PC: partially controlled; UA: uncontrolled asthma; LMICs: low and medium income countries.

2.4.1. Prevalence of physical activity

Among studies using a control group, eleven^{291-293, 296, 300, 302, 303, 305, 306, 308, 310} (asthma sample =32,606) reported less physical activity in asthma, and six reported no difference^{294, 301, 304, 307,}^{309, 311} (asthma sample=7824). One study²⁹⁹ (asthma sample size=1,070) reported increased physical activity in younger adults with asthma (<40 years old), but decreased in older participants (>50 years old).

Activity monitors were used in 8 studies^{291-297, 312}. Five of them included a control group^{291-293, 295, 296} (Table 2-3 and 2-4). A meta-analysis (Figure 2-B) found that the weighted mean (95%CI) number of steps/day for people with asthma was 8390 (7361, 9419). In the four studies that compared the volume and/or intensity of activity, people with asthma tended to accumulate less physical activity than controls (Table 2-5).

Some studies reported an effect of age and sex on activity in asthma. Three studies reported that the decrease in activity in people with asthma was mostly seen in older participants (\geq 50 years old)^{299, 303, 310}. For instance, despite their overall results showing that people with asthma were more inactive than controls, Ford et al.³⁰³ did not find statistically significant differences in the association between activity and asthma status in people under the age of 60. Some studies reported that males with asthma presented higher levels of activity than females with asthma or than their healthy counterparts^{305, 311, 323, 324}. Furthermore, two studies demonstrated that the decrease in activity that develops in older people with asthma occurs earlier, or exclusively, in females than males^{299, 302}. Dogra et al.³⁰² for instance, found that the levels of physical activity between middle-age and older males with asthma were similar, while older females with asthma were considerably less active than their younger counterparts.

	Studies using questionnaire	s			
Study	Asthma definition	PA or ST measurement	PA or ST domain	Recall period	Outcome
Chen 2001 ²⁹⁹	Self-reported asthma diagnosed by a health professional	PA questionnaire from National Population Health Survey Canada	LTPA	12-month	Mean daily energy expenditure (EE) (kcal kg ⁻ ¹ day ⁻¹)
Doggett 2015 ³⁰⁰	Self-reported physician- diagnosed asthma and use of asthma medication.	Questionnaire	LTPA Television-viewing time (TVT)	PA: 1-week TVT: typical week in last 3 months	PA: frequency and intensity of (measured as increase of heart rate and breathing) TVT: >10 and ≤ 10 hours/week as high and low TVT respectively
Dogra 2008 ³⁰²	Self-reported physician- diagnosed asthma	Questionnaire from CCHS cycle 2.1	LTPA	n/r	Active (≥ 1.5 kcal/kg/day) Inactive (<1.5 kcal kg/day) (estimated from EE)
Dogra 2009 ³⁰¹	Self-reported physician- diagnosed asthma	From CCHS cycle 3.1	LTPA	n/r	Active (>3.0 kcal/kg/day), "Moderately active" (1.5–3.0 kcal/kg/day), "inactive" (<1.5 kcal/kg/day)
Ford 2003 ³⁰³	Self-reported physician- diagnosed asthma	Questionnaire from 2000 BRFSS	LTPA	1-month	Frequency and duration. EE/week, and PA Index
Liang 2015 ³⁰⁴	Self-reported asthma	Questionnaire from Australian National Health Survey 2007-08	РА	1-week	Intensity and frequency ≥ 800 MET: meeting PA guidelines
Malkia 1998 ³⁰⁵	Self-reported physician- diagnosed asthma and spirometry.	Questionnaire	LTPA, PA at work and during commuting.	n/r	Intensity and frequency METs at work and spare time. PA during commuting
Ramos 2015 ³⁰⁶	Asthma diagnosed by a physician	IPAQ - short form	LTPA	Average day in the last week	PA from EE + duration [METs- min/week]
Ritz 2010 ³⁰⁷	Asthma diagnosed by a physician	Electronic diary	PA in the past 30 minutes	3 times/day for 21 days	Frequency and intensity

Table 2-3: Physical activity measurements in studies with a control group.

Teramoto 2011 ³⁰⁸	Self-reported current or lifetime asthma diagnosed by a health professional	Questionnaire from 2009 Nevada BRFSS	LTPA	1-month	Engagement on PA, meet PA guidelines. Minutes/ week of MVPA
Tsai 2011 ³⁰⁹	Asthma diagnosed by a physician	Stanford 7-Day Physical Activity Recall	LTPA	1-week	Frequency and Intensity METs
Vancampfort 2017 ³¹⁰	Self-reported lifetime diagnosis of asthma	Extract from IPAQ	LTPA	1-week	Volume of MVPA (<150 minutes/week = low PA)
Verlaet 2013 ³¹¹	Self-reported asthma	IPAQ - short form	LTPA Daily sitting time	Average day in the last week	LTPA: MET-min/week Volume of daily sitting time in minutes.
	Studies using activity monit	tors			
	Asthma definition	PA or ST measurement	PA or ST domain	Wear- time protocol	Outcome
Bahmer 2017 ²⁹¹	Physician-diagnosed asthma, and in specialist care for > 3 months.	SenseWear Pro Armband	Total PA	Worn for 1 week. Inclusion: ≥5 days of 22.5 h	Steps/day Average minutes of at least moderate activity/day (EE>3 METs)
Bruno 2016 ²⁹²	Recruited according the ATS criteria	SenseWear Armband	Total PA	Worn over triceps area for 4 days, 24 h/day (excluded water-based activities) Inclusion: n/r	PA level (mins/day); Active EE (kcal/day); steps/day; Total EE (kcal/day)
Cordova- Rivera 2017 ²⁹³	Asthma diagnosed by a respiratory physician according to GINA guidelines.	ActiGraph wGT3X-BT	Sedentary time Total PA	Worn on dominant hip for 14-consecutive days, 24 h/day (sleeping and non- wear time excluded)	Minutes/day of: sedentary time, light PA and moderate and vigorous and very vigorous PA. Steps/day
Moore 2015 ²⁹⁴	History of asthma and any of the following: positive spirometry, positive AHR, ≥10% decrease in FEV ₁ after an exercise challenge	SenseWear Pro3 Armband	Total PA	Worn over triceps area of dominant arm for 3 days, 24 h/day. Inclusion: preferably 2 weekdays, 1 weekend day.	Steps/day Energy expenditure

*Scott 2013 ²⁹⁵	Physician-diagnosed asthma, and history of AHR	Pedometer	Steps	Worn for 7 days, recording steps a diary, (prior randomisation)	Steps/day
Van't Hul 2016 ²⁹⁶	Asthma diagnosed by a respiratory physician and use of asthma medication.	DynaPort MoveMonitor	Total PA Sitting and lying time	Worn on lower lumbar spine for 7 consecutive days, 24 h/day (excluded water-based activities). Inclusion: ≥2 (PA) and ≥5 (lying) days of ≥22.5 h.	Hours/day in walking, sitting, and lying. Steps/day D. PA level (total EE/day): >1.70 active, 1.40 - 1.69 predominantly sedentary, <1.40 very inactive.
*Vermeulen 2016 ²⁹⁷	Previous asthma diagnosis, asthma exacerbation.	SenseWear Armband	Total PA	Worn for 7 days Inclusion: n/r	Steps/day, % of time at an intensity: < 3 METs, 3 to 6 METs, 6 to 9 METs and ≥ 9 METs
*Yamasaki 2017 ³¹²	Asthma diagnosed by a respiratory physician.	Actiwatch 2	Total PA	Worn for 7 days Inclusion: n/r	Activity counts

PA: physical activity; ST: sedentary time; LTPA: leisure time physical activity; EE: energy expenditure; CCHS: Canada community health survey; kcl: kilocalorie; BRFSS: Behavioral risk factor surveillance system; MET: metabolic equivalent task; IPAQ: International physical activity questionnaire; AHR: airway hyperresponsiveness; MVPA: moderate to vigorous PA; n/r: not reported. *These studies did not have a control group but were included in this table to provide further details of the activity monitors used.

2.4.1.1. Reduced physical activity in people with asthma.

From the 11 studies reporting lower levels of physical activity in people with asthma compared to controls^{291-293, 296, 300, 302, 303, 305, 306, 308, 310}, four studies used activity monitors^{291-293, 296}. Van't Hul et al.²⁹⁶ found that people with asthma spent significantly less time walking, engaging in vigorous physical activity, and accumulated less steps/day than controls. Cordova-Rivera et al.²⁹³ reported that in participants with severe asthma, steps/day and moderate and vigorous physical activity (MVPA) were reduced by 31.4% and 47.5% respectively compared to controls (p < 0.001 both results).

From the studies using questionnaires, Teramoto et al.³⁰⁸ reported that control participants spent an additional 60 minutes/week engaged in moderate physical activity and 67 minutes/week in vigorous activity compared to the asthma group (p < 0.001). Ford et al.³⁰³ reported that people with current asthma were more inactive (asthma=30.9%, never asthma=27.8% p < 0.001) and engaged in less vigorous physical activity (asthma=12.7%, never asthma=14.8% p < 0.001) than people without a history of asthma. Vancampfort et al.³¹⁰ reported that asthma was significantly associated with low physical activity (engaging in <150 min/week of moderate and vigorous physical activity), especially in people >50 years old (odds ratio (OR)(95%CI) 1.67(1.33-2.10), p < 0.0001).

The level of activity decreased with loss of asthma control²⁹⁶, and increasing asthma severity^{291, 292}. Bahmer et al.²⁹¹ reported that both steps/day and the time spent in MVPA in participants with severe asthma were reduced by 21% and 17% respectively, compared with participants with less severe disease (p < 0.05).

2.4.1.2. Maintained physical activity in people with asthma.

In six studies there were no consistent differences in the level of the activity between the asthma and control groups^{294, 301, 304, 307, 309, 311}. One study used an activity monitor²⁹⁴. Verlaet

et al.³¹¹ found that the proportion of participants performing MVPA was similar among people with controlled and uncontrolled asthma compared with controls; 32%, 38.5% and 33.7% (p > 0.05) for each group respectively. Liang et al.³⁰⁴ reported that the prevalence ratio (95% CI) for young adults with asthma (<30 years old) engaging in physical activity at the recommended level was 1.09 (0.92, 1.28) compared to those without asthma.

2.4.1.3. Increased physical activity in people with asthma.

Chen et al.²⁹⁹ found that younger adults with asthma achieved higher levels of activity compared to their age-matched healthy counterparts, whereas this pattern of activity reversed in the older age group, especially in females. The mean [Standard Error (SE)] energy expenditure (EE) for men in the 25-39 years age group with asthma versus their control group was 2.16 (0.22) compared to 1.72 (0.15) kcal kg/day⁻¹; and 1.60 (0.14) versus 1.28 (0.06) kcal kg/day⁻¹ in the female asthma group compared to female controls (p = 0.02 for both). At the age of 40 this trend started to reverse, becoming statistically significant in women >55 years, and for both sexes in the \geq 70 years group. In the age group \geq 70 years, males with asthma reported a mean (SE) EE of 0.72 (0.34) versus age-matched controls 1.45 (0.15) kcal kg/day⁻¹, while females reported a mean of 0.79 (0.17) versus 1.17 (0.07) kcal kg/day⁻¹ ($p \le 0.02$ both results).

Figure 2-B: Forest plot of standardised mean (95% confidence intervals) for steps/day.

Authors: Bahmer et al., Scott et al., and Van't Hul et al. were contacted and provided the mean and standard deviation of their results.

2.4.2. Prevalence of sedentary time

Sedentary time was reported by four studies^{293, 296, 300, 311}. Two used an activity monitor^{293, 296}. Van't Hul et al. reported that asthma participants spent more time lying down compared to controls (hours/day mean difference (95% CI) 0.59 (0.15, 1.03) P<0.01), but less time sitting than controls (p > 0.05)²⁹⁶. Similarly, another study did not find a significant difference in sedentary time between people with severe asthma and controls (minutes/day mean ± SD 674.4 ± 71 versus 676.2 ± 65, respectively p > 0.05)²⁹³. Doggett et al.³⁰⁰ reported that the time spent watching TV for over 10 hours/week was 50.4% in the asthma population compared to 42.9% in the non-asthma group (p < 0.05).

2.4.3. Associations between physical activity or sedentary time and asthma health outcomes

Twenty-seven studies reported associations between the level of activity and asthma health outcomes. Five were longitudinal^{314, 316, 318, 319, 321}. Associations with sedentary time were addressed in three studies^{293, 300, 311}. Table 2-4 reports the main findings of these studies. Further descriptions of these association are summarised in the online supplement.

The relationship between physical activity and lung function was assessed in 10 studies^{291-293, 296, 305, 307, 312, 314, 318, 320}. Weak but significant associations were reported in eight studies^{291-293, 305, 307, 312, 314, 318}, from which two were of longitudinal design^{314, 318}. Measures of asthma control or asthma related health status were reported in 13 studies, 12 of them of cross-sectional design^{293, 296, 297, 307, 311, 313, 315, 317, 320, 321, 323-325}. Most of the studies found a positive association between higher physical activity and better clinical outcomes, although in some studies these associations were attenuated to the null when BMI was included as a confounder^{313, 321, 323, 324}. For instance, in their longitudinal analysis, Russell et al.³²¹ reported that the protective effect found for light physical activity on current asthma (defined as

reporting asthma symptoms, taking asthma medication, or having an asthma exacerbation in the last 12 months) was no longer significant after adjusting for BMI. Vigorous physical activity was associated with more asthma symptoms in three studies^{307, 311, 321}.

Measures of health care utilisation were evaluated in six studies^{300, 301, 316, 319, 322, 324}. Less physical activity was associated with increased exacerbation and/or higher health care utilisation in four of them^{300, 301, 319, 322}. However, contradicting results were reported in the two longitudinal cohorts^{316, 319}. Positive associations between measures of exercise capacity and physical activity were reported in two cross-sectional studies^{293, 320}. Higher physical activity (steps/day) was associated with lower systemic inflammation (high-sensitivity CRP) in one study²⁹³. No significant associations were found between physical activity and measures of eosinophilic airway inflammation²⁹³.

Higher levels of sedentary time were associated with worse asthma clinical outcomes in two cross-sectional studies^{293, 300}. In one of them, these associations were no longer significant after adjustment for physical activity²⁹³. Doggett et al.³⁰⁰ reported an increased OR (95% CI) for GP consultations 2.59 (2.34, 2.87), and hospitalisations in the past year 1.95 (1.82, 2.08) and past 5 years 1.13 (1.07, 1.18) (p <0.001 for all results) for adults with asthma who reported >10 hours of television time/week compared to those who reported <10 hours.

Table 2-4: Association between physical activity or sedentary time with asthma outcomes.

Citation	Outcome measures	Conclusions
Bacon 2015 ³¹³	PA, ACQ and AQLQ	Participants engaging in high levels of PA (20.1±8.9 METs-h/week) were nearly 2.5 times more likely to have good control (ACQ ≤ 0.8) compared with inactive patients [AOR (95% CI) 2.47 (1.06–5.73)]. Results for AQLQ were not significant.
*Bahmer 2017 ²⁹¹	Steps, spirometry, body plethysmography, impulse oscillometry.	Decreased PA in asthma is associated with airway resistance and small airway dysfunction, but not with airway limitation.
Brumpton 2016 ³¹⁴	PA, lung function decline.	Less decline in FEV ₁ /FVC in active asthma participants than inactive asthma participants [FEV ₁ /FVC (%): -0.14 (-0.27, -0.01) ($p = 0.03$)]
*Bruno 2016 ²⁹²	PA, FEV1/FVC, fat free mass and Intracellular water.	PA positively correlated with FEV ₁ /FVC. [Rho = 0.34 ($p < 0.05$)]
*Cordova-Rivera 2017 ²⁹³	ST, MVPA, Steps, 6MWD, spirometry, ACQ, AQLQ, hs-CRP, FeNO, sputum eosinophilia.	Higher levels of PA and lower levels of ST were positively associated with most of the clinical/biological outcomes, especially for Steps and exercise capacity (coeff (95% CI) 0.02 (0.00 to 0.04); $p < .01$) and systemic inflammation, and MVPA and ACQ (coeff (95% CI) -1.94 (-3.69 to -0.18); P= 0.032).
Doggett 2015 ³⁰⁰	ST (TV time), PA, health care use.	High levels of TV time associated with: more consultations (AOR (95% CI) 2.59 (2.34 2.87), hospital stays in the last year (AOR 1.95 (1.82, 2.08) and in the past 5 years (AOR = 1.13 (1.07, 1.18) Insufficient PA associated with higher health care use: hospital stays in the past year (AOR 1.16 (1.08, 1.23) or past 5 years (AOR 1.22 (1.16, 1.28)
Dogra 2006 ³¹⁵	PA (EE), self-reported measures of health.	Higher PA associated to better self-reported health outcomes.
Dogra 2009 ³⁰¹	PA (EE), health care use.	Lower PA levels associated with higher health care use in people with asthma: Overnight hospital stays (AOR (95%CI) 1.78 (1.31, 2.41); ≥3 GP consultations (AOR 1.26 (1.03, 1.55)
Fisher 2016 ³¹⁶	PA, asthma readmission.	No association between PA and asthma hospital readmissions in people with asthma.

Ford 2004 ³¹⁷	PA, QoL.	Physical inactivity (compared to VPA) significant independent predictor of impaired QoL: Poor or fair health OR (95% CI)2.36 (1.72, 3.22); >14 days with activity limitation: 2.76 (1.89 4.02); >14 days physically or mentally limited: 1.90 (1.59 2.32)
Garcia-Aymerich 2009 ³¹⁹	PA (METs-h/week), asthma exacerbation.	Higher levels of PA associated with a lower risk of asthma exacerbation.
Garcia-Aymerich 2007 ³¹⁸	Levels of PA, lung function decline.	MVPA in participants with asthma improved lung function decline by gaining 10 ml and 7 ml/ year of FEV ₁ and FVC respectively, compared to the low PA group (significance not reported)
Ikura 2013 ³²⁵	PA and asthma control test (ACT)	In MVRA, periodical PA (>3 METs-h/week) was significantly associated with better asthma outcome (coefficient = 0.152 , $p = 0.002$)
	PA (EE), 2MWT, CRT, asthma control	PA positively correlated with physical performance in both test (2MWT Rho = 0.38; CRT Rho= - 0.39).
Mancuso 2007 ³²⁰	(ACQ), severity, and lung function (spirometry).	In MVRA, better asthma control associated with more EE from walking, but not with total EE. FEV1 associated with PA only in SLRA.
Malkia 1998 ³⁰⁵	PA Intensity (METs), lung function (spirometry).	Weak but significant positive correlations of PA intensity and lung function in men only (Rho FEV ₁ =0.26; PEF=0.35)
Ritz 2010 ³⁰⁷	PA intensity, lung function (spirometry), SOB, social activity, inhaler use.	Higher PA levels associated with higher PEF, higher FEV_1 in the morning and evening only, and more SOB.
Russell 2016 ³²¹	PA with follow-up current asthma (CA) and asthma symptoms (AS)	LPA ≥3 times/week at baseline associated with less follow-up CA [OR (95%CI) 0.44(0.22 0.89)]. Result attenuated by BMI. Result for VPA p > 0.05
		Asthma participants with normal BMI show a significant reduction of AS associated with PA, while the overweight and obese category did not.
Strine 2007 ³²²	Inactivity and measures of asthma severity.	People with asthma who were inactive had significantly poorer control compared to those who were not: >3 ER/year (AOR (95%CI):2.4 (1.6, 3.6); GP visit/year (AOR:1.5 (1.1, 2.0); Absenteeism >2 weeks/year: (AOR: 1.7 (1.3, 2.0); daily symptoms (AOR: 2.5 (1.9, 3.4); Inhaler 30+ times/month (AOR: 1.9 (1.5, 2.5)

*Van't Hul	PA, ACQ, AQLQ and lung function	Low PA was correlated with poorer asthma control. No correlation between spirometry and PA (value not
2016 ²⁹⁶	(spirometry).	reported) Nil reference regarding AQOL.
*Vermeulen	Steps/day, activity limitation (ACQ	No correlation found between PA and activity limitation.
2016 ²⁹⁷	question 3)	
Verlaet	PA or daily sitting time (ST), and	MPA and ST predictor of controlled asthma in men: (AOR (95% CI) 1.84 (1.02, 3.30); (OR: 1.87 (1.06, 3.28)
2013 ³¹¹	asthma control (CARAT Questionnaire)	respectively. VPA doubled the risk of uncontrolled asthma in women: AOR: 1.94 (1.13-3.35).
Westermann	Exercise habits, asthma severity and	Higher BMI was more closely associated with exercise habits than were asthma control and severity, after
2008 ³²³	asthma control (ACQ)	adjusting for demographic variables.
Yamasaki	PA, oxidative stress and antioxidants in	Significant correlations only for PA (Activity counts/minute) and FEV1/FVC.
2017 ³¹²	blood, spirometry, FeNO, levels of	
	vitamins in serum, vitamin intake.	
Yawn	Volume and intensity of PA, asthma	Low PA associated with asthma control only in SLRA.
2015 ³²⁴	control (APGAR), exacerbations.	

* Studies using activity monitors. PA: physical activity, ST: sedentary time; PAL: physical activity level; LTPA: leisure-time PA; LPA: light PA; VPA: vigorous PA; MVPA: moderate and vigorous PA; Steps: average steps/day; ACQ: asthma control questionnaire; AQLQ: asthma quality of life questionnaire; QoL: quality of life; 6MWD: -minute walk distance; hs-CRP: high sensitivity C-reactive protein, FeNO: fraction of exhaled nitric oxide; SOB: shortness of breath; 2MWT: 2-minute walk test; EE: energy expenditure; METs: metabolic equivalent task; RM: repetition maximum; FEV₁: forced expiratory volume in the first second; ER: emergency room; AOR: adjusted odd ratio; CI: confidence interval; SLRA: simple linear regression analysis; MVRA: multi-variable regression analysis; OR: odds ratio; AHR: adjusted hazards ratio

	Steps per day				Volume/Intensity of PA or Sedentary time			
					(minutes⁺ or hours^/ day)			
	N	Asthma	Controls	<i>p</i> -value	Asthma		Controls	p-value
Bahmer 2017 ²⁹¹	SA: 63	SA: 6174 [4822-9277]	8,912		S,	A:125 [68 - 172]		
	MA: 83 C:29	MA: 7841 [6534 - 10252]	[6800 - 11127]	< 0.001	MVPA⁺ N	1A:151 [99 - 197]	163 [110 – 207]	<0.05 #
Bruno 2016 ²⁹²	A: 24 C: 18	10,434 ± 3,813	10860 ± 3042	> 0.05	PA ⁺ : 69.7 ± 84 AEE: 335 [380]	.2] ^{&} kcal/day	93.2 ± 101 486.7 [435]	0.04 0.04
Cordova-Rivera 2017 ²⁹³	SA: 61 C: 61	5362 [3999 - 7817]	7817 [6072 - 10014]	0.0002	ST ⁺ 674 LPA ⁺ 193 MVPA ⁺ 21.9	l.4 ± 71 3 ± 57.5 9 [12.8 -37.9]	676.2 ± 65 171 ± 50.6 41.7 [29.3, 65.8]	> 0.05 0.029 < 0.0001
Moore 2015 ²⁹⁴	A: 16 C: 16	11125 ± 5487	10711 ± 2675	> 0.05	n/a		n/a	
Scott 2013 ²⁹⁵	A: 33	8341 ± 3377	n/a		n/a		n/a	
					Sitting [^] : 8.21 [PAL: 1.53 [1.53	7.95 - 8.48] 1 - 1.55]	8.6 [8.29 - 8.86] 1.57 (1.55-1.59)	> 0.05 0.034
Van't Hul 2016 ²⁹⁶	A: 226 C: 201	7593 [7155 - 8030]	8,795 [8326 - 9263]	0.001	LPA [^] : 1.7 [1.65 MPA [^] : 1.66 [1. VPA [^] : 0.34 [0.3	5 - 1.88] .58 - 1.74] 30 - 0.38]	1.91 [1.80-2.02] 1.64 [1.55-11.7] 0.45 [0.41-0.49]	> 0.05 > 0.05 <0.001
Vermeulen 2016 ²⁹⁷	A:20	10159 ± 3751	n/a		MET 0-3 (% tir MET 3-6 (% tir	ne): 87.2 ne): 12.07	n/a	
Yamasaki 2017 ³¹²	A: 18	n/a	n/a		⁺ Activity coun	ts: 283.3 ± 81.1	n/a	

Table 2-5: Activity outcomes from activity monitors.

SA: severe asthma, MA: mild to moderate asthma. A: asthma, C: controls. Results expressed as mean ± standard deviation or median [IQR]. + reported as minutes/day. ^ Reported as hours/day. # P value for whole asthma sample compared to healthy control. &: reported as median [IQR] by the authors. PA: physical activity; AEE: active energy expenditure; kcal: kilocalories; PAL: physical activity level; MVPA: minutes of at least moderate PA/day. LPA: light physical activity, MPA: moderate PA, VPA: vigorous PA, ST: sedentary time, n/a: not assessed; MET 0-3: metabolic equivalent task of light PA; MET 3-6: moderate PA. Statistically significant results in bold.

2.5. Discussion

This review summarises the literature in relation to the prevalence of physical activity and sedentary time in people with asthma, and the associations between these behaviours and different disease outcomes. We found that people with asthma undertake less physical activity than people without asthma, and that the level of activity in asthma seems to be influenced by age, sex, and disease severity.

We also found that people with asthma average 8390 steps/day. This is almost double the value observed in COPD, where an average of 4579 steps/day was reported (FEV₁% < 50% in 55% of studies included)²⁷⁰. This suggests that while physical activity may be reduced in asthma, the degree of reduction is not as severe as in COPD. Nevertheless, there are subgroups in the asthma population where physical activity is lower^{291-293, 296}. The two studies including people with severe asthma reported a median of around 5800 step/day^{291, 293}. Therefore, the estimate of 8390 steps may not be a value applicable to more severe asthma populations. However, considering that this is the first meta-analysis of steps performed in adults with asthma, and that the objective measurement of physical activity in asthma is a fairly recent topic, this value provides a reference that can be updated and developed with future studies.

We found that physical activity seems to be influenced by sex. Several studies reported better activity outcomes in men with asthma compared to women. Similar findings have been reported in children with asthma compared to controls, suggesting that lower levels of activity are only present in women^{334, 335}. In the general population it has also been found that both girls³³⁶ and adult females^{337, 338} do less activity than their male counterparts. However, the fact that the decline in activity in middle-aged and older people with asthma is seen earlier in women^{299, 302}, may suggest that the disease consequences are more severe, or

have a greater impact on health in females. Supporting this observation is evidence suggesting that among people with similar asthma severity, women tend to have poorer self-reported measures of asthma control and health status³³⁹ and are twice as likely to be admitted to hospital due to acute asthma³⁴⁰. From a societal perspective, this sex difference could also be due to changes in physical activity after retirement, with women retiring at an earlier age³⁰².

We also identified a potential effect of age on the level of physical activity, showing that the decrease in activity is more pronounced, or even exclusive, in the older asthma population^{299,} ^{303, 304, 310}. This is in line with evidence that younger people with asthma engaged in similar²⁹⁰ or higher^{335, 341} levels of activity compared to their age-matched controls. Plausible biological reasons could relate to the age-related changes in the lung leading to an increased work of breathing that are more extreme in people suffering from respiratory morbidity. Furthermore, older people with asthma are likely to have a longer duration of disease, therefore may have more airway remodelling resulting in incomplete reversibility of airflow limitation¹²⁵. It is also worth mentioning that in the last 30 years, there has been a growing body of evidence that supports the adherence to exercise in people with asthma. This contradicts previous beliefs that people with asthma should avoid exercise and physical activity³⁴². It is likely that the age-effect identified in this review is linked to this paradigm shift. Finally, people over 50 years of age with obstructive airway disease show a high degree of overlap in features of both asthma and COPD¹²⁵, so it is possible that the activity levels of older people with asthma could be similar to that of COPD populations^{165, 259, 270}; a finding that requires further investigation, and may focus physical activity interventions to an older age group.

In terms of the associations with physical activity, there was a trend showing that higher physical activity was modestly associated with better lung function in people with asthma. In two longitudinal studies, a trend towards slower lung function decline in active people with asthma compared to inactive people was reported^{314, 318}. Studies carried out in the general population^{343, 344} have suggested that this positive impact may be due to the counteracting effect that physical activity may have on the age-related chest wall stiffening³⁴³, or to a potential positive impact on inspiratory muscle endurance³⁴⁵. Among the cross-sectional studies, the results were less consistent. Interestingly, in two of the studies reporting a positive association between spirometric values and physical activity^{292, 307} participants were relatively young (mean age <39 years), with moderate disease severity, whereas studies in severe or uncontrolled asthma population, did not find an association^{291, 296}. A systematic review of RCTs of physical training in asthma⁸⁶ concluded that exercise was not significantly associated with spirometric parameters. Similarly, in COPD, spirometric values have shown a weak to moderate association with physical activity²⁷¹. Bahmer et al.²⁹¹ reported that airway resistance and small airway dysfunction were better markers of physical activity than spirometric values in moderate and severe asthma participants. Whether the association between airflow limitation and physical activity is modulated by time since diagnosis or disease severity, needs further investigation.

Some studies reported a positive association between physical activity and asthma control^{293, 296, 311, 313, 325} or health status^{293, 317}, which is in line with studies reporting the beneficial impact of exercise protocols on these clinical outcomes^{81, 83, 87, 346}. In some studies, however, the strength of these associations was attenuated to the null when confounders such as BMI were included^{313, 321, 323, 324}, which suggests that the association between obesity and asthma control is stronger than the association between activity and asthma control. Studies addressing the relationship between current or incident asthma, BMI and physical activity,

have shown similar results^{329, 331}. Nevertheless, another study found that the association between asthma control and MVPA was still significant after adjusting for BMI, among other confounders²⁹³. This suggests that MVPA may still have a modest but independent positive effect on asthma control, in addition to its important role in weight management³⁴⁷. Some authors also found an increase in asthma symptoms due to engagement in vigorous physical activity^{307, 311, 321}. Similar findings have been previously reported, especially in females^{335, 341}. A link between strenuous exercises (a component of vigorous physical activity) and the development of EIB or exercise-induced asthma symptoms has been well-documented in the literature^{348, 349}. In fact, a dose-response relationship has been proposed, where both very low levels of activity (inactivity) and vigorous activity are associated with higher risk of asthma symptoms, while exercise carried out at a moderate level shows a protective effect³⁴⁹.

In terms of the association with asthma exacerbation and health care use, Garcia-Aymerich et al.³¹⁹ found a longitudinal dose-related protective effect of physical activity on risk of hospital admission for asthma exacerbation. Fisher et al.³¹⁶ did not observe a significant association between activity engagement and risk of readmission in people with asthma. However, they observed the same pattern in the COPD population, and attributed this lack of association to the small number of participants with asthma and COPD at baseline. Longitudinal studies in COPD have found that physical inactivity is strongly related to acute exacerbations resulting in hospitalisation, reduced length of time until admission for an exacerbation, and increased all-cause mortality^{264, 272-274}. The body of evidence for asthma is considerably less, and unlike studies conducted in COPD^{264, 274}, very few have relied on objective physical activity measures to assess the associations of this behaviour with disease outcomes.
Data on exercise capacity was scarce^{293, 320}, but the available evidence suggests that physical activity, especially steps, is positively associated with functional exercise capacity. Interestingly, a weaker effect was observed for MVPA which may suggest that the biggest benefits are obtained by engaging in light to moderate, but more continuous physical activity, rather than shorter but intense periods²⁹³. Exercise training in patients with asthma can improve cardiopulmonary fitness, assessed by the direct oxygen consumption⁸⁶, and exercise capacity measured by the 6MWD improves immediately after a 6-week exercise programme (3 weekly supervised sessions of walking training and strength exercises) and at three months follow-up⁸³. In an RCT, improvement in aerobic capacity and weight loss were independently associated with improvements in asthma control⁸². This highlights the potential benefit of promoting physical activity as a way to improve different impairments in asthma, which despite of being assessed as different clinical outcomes, still affect the person in multiple dimensions of the disease.

Fewer studies have examined sedentary time in asthma. Both studies using activity monitors did not find significant differences between people with asthma and controls^{293, 296}, but both groups were highly sedentary. A third study³⁰⁰ reported that people with asthma had higher time watching television than controls. However, in this study a self-reported proxy of sedentary time was used. Higher sedentary time was associated with decreased exercise capacity, lung function, and asthma control²⁹³, but these associations were attenuated to the null when physical activity was included as a confounder. This suggests that the deleterious effect of sedentary time may be overcome when engaging in some physical activity¹⁹². Nevertheless, promoting frequent and longer breaks of sedentary time may be a more achievable goal than increasing activity levels in people with obstructive airway disease. In COPD, there are data linking objectively measured sedentary time with postural-based

accelerometers²⁰⁹ are required to explore to what extent sedentary time is occurring in asthma and whether it is associated with poorer asthma outcomes.

2.5.1. Strength and limitations

This review followed a structured search protocol and used several electronic databases. Since the review of Eijkemans et al.²⁶¹, there have been a growing number of studies addressing the prevalence of physical activity in asthma. Additionally, the use of activity monitors in asthma is a relatively new topic and was not addressed in the previous review. Our review also adds to the literature summarising the evidence of the impact of physical activity on different asthma outcomes. Furthermore, to our knowledge, there is no review reporting measures of sedentary time in people with asthma. However, there are some limitations that need to be considered. Our analysis was restricted to studies published in English, and thus we may have missed literature published in other languages. Additionally, since we only included studies conducted in adults, these results should not be generalised to children. In terms of the studies included, there was a great deal of heterogeneity in the clinical asthma and activity outcomes measures, as well as population characteristics. Furthermore, most of the studies were of cross-sectional design. Therefore, reverse causation of the associations reported must be considered as a possibility. Finally, most of the studies were performed either in mild or moderate asthma populations, or severity was not reported. As such, the severe asthma population may be underrepresented in this review, but this highlights the need for further research in this more complex population. Nevertheless, this review provides a complete update of prevalence and associations of these two behaviours in people with asthma and provides insight of the gaps in the literature that need to be addressed in future studies.

2.6. Conclusions

People with asthma appear to engage in lower levels of physical activity compared to controls. Disease outcomes seem to improve as the volume or intensity of physical activity increase. However, studies that use objective measures of activity, participants with asthma diagnosed according to guidelines¹, and more standardised measures of clinical asthma outcomes are needed. Also, further studies addressing sedentary time in asthma might help to understand whether this behaviour is present, and to what extent is associated with poorer asthma outcomes. Specifics subgroups, such as those over 50 years old, and those with severe asthma are under researched, and an understanding of how age and severity interact in the relationship between activity and asthma clinical or biological outcomes is needed. Longitudinal studies and RCTs exploring the direction of the relationships between physical activity and asthma outcomes are also needed to improve the consistency of the evidence. The results of this review strongly support the need to undertake this research.

2.7. Supplementary information

Associations between physical activity and sedentary time in asthma health outcomes

Twenty-seven studies reported associations between the level of activity and asthma health outcomes. Five were longitudinal^{314, 316, 318, 319, 321}. Associations with sedentary time were addressed in 3 studies^{293, 300, 311}. Table 2.5 reports the main findings of these studies.

The relationship between physical activity and lung function was assessed in 10 studies^{291-293,} ^{296, 305, 307, 312, 314, 318, 320}. Weak but significant associations were reported in 8 studies^{291-293, 305,} ^{307, 312, 314, 318}, from which 2 were of longitudinal design^{314, 318}. Brumpton et al.³¹⁴ reported that active people with asthma had a slower decline in lung function at follow-up compared with inactive individuals. The mean decline in the FEV₁/FVC ratio was 0.36% and 0.22% per year among inactive and active participants with asthma, respectively (p < .03). Bahmer et al.²⁹¹ reported that fewer steps/day were associated with increased airway resistance and small airway dysfunction. Van't Hul et al.²⁹⁶ did not find any correlation between measures of physical activity and spirometric assessments.

Asthma control and health status

Measures of asthma control or asthma-related health status were reported in 13 studies^{293,} ^{296, 297, 307, 311, 313, 315, 317, 320, 321, 323-325}, 12 of them of cross-sectional design^{293, 296, 297, 307, 311, 313, 315,} ^{317, 320, 323-325}. The results suggest that higher levels of moderate and vigorous physical activity (MVPA) were associated with better asthma control. However, vigorous physical activity was also associated with more asthma symptoms^{307, 311, 321}. Bacon et al.³¹³ concluded that participants who engaged in the recommended levels of activity were almost 2.5 times more likely to have good asthma control compared with less active participants (AOR 2.47; 95% CI 1.06, 5.73). Cordova-Rivera et al.²⁹³ also found a positive association between higher volume of MVPA and better asthma control even after adjusting for the time spent sedentary and confounders such as BMI, age, and smoking status. The authors reported that a 15-minute increase in MVPA was associated with an improved asthma control questionnaire score of 0.29 units (p < 0.032, adjusted R² for the model: 0.18). Russell et al.³²¹ found that physical activity was positively associated with asthma symptoms only in participants with normal weight (BMI < 25), whereas this was not observed in participants with a BMI > 25. In addition, in their longitudinal analysis, the relationship between baseline light activity and follow-up current asthma (defined as reporting asthma symptoms, taking asthma medication, or having an asthma exacerbation in the last 12 months) was attenuated to the null after adjusting for BMI. Among studies reporting negative effects of activity, Verlaet et al.³¹¹ found that vigorous activity doubled the risk of uncontrolled asthma in females (AOR 1.94; 95% CI 1.13, 3.35); *p* < 0.05), and in their longitudinal analysis, Russell et al.³²¹ found a non-significant negative trend on current asthma from higher engagement in vigorous physical activity (AOR [95% CI]) of current asthma for 1 to 2 vigorous activity sessions/week: 0.75 (0.38, 1.46) versus >3 sessions/week: 1.03 (0.42, 2.49). In terms of health status, Ford et al³¹⁷ reported that inactive people with asthma were more than twice as likely to report poor or fair health compared with those doing regular vigorous activity (OR [95% CI] 2.36 [1.72, 3.22]).

Exacerbations and heath care use

Measures of health care utilization were evaluated in 6 studies^{300, 301, 316, 319, 322, 324}, 2 of which were longitudinal cohorts^{316, 319}. In 4 studies, less physical activity was associated with increased exacerbation and/or higher health care utilization^{300, 301, 319, 322}. A longitudinal study involving women with asthma³¹⁹ demonstrated that the higher the level of activity performed, the lower the risk of admission for exacerbation (p = 0.05 for trend). Strine et al.³²² reported that inactive people with asthma were more likely to have \geq 3 visits to the emergency department for asthma in the last year (AOR [95% CI] 2.4 [1.6, 3.6]) compared with their active peers. Conversely, Fisher et al³¹⁶ did not find any association between readmission for asthma (mean follow-up 16 years) and participation (yes/no) in physical activity. However, they reported a non-significant trend in the association between readmission for asthma and the time spent in activity. Participants engaging in >4 hours/week of gardening and cycling had a 10% and 22% reduced risk of readmission for asthma, respectively, compared with participants spending <4 hours (hazard ratio [95% CI] for gardening 0.90 [0.58, 1.39] and cycling 0.78 [0.49, 1.25]).

Exercise capacity

Measures of exercise capacity were evaluated in 2 cross-sectional studies^{293, 350}. Cordova-Rivera et al.²⁹³ found that steps/day were strongly associated with the 6-minute walk distance, even after adjustment for sedentary time and other confounders. The authors reported that every 1000-step/day increase was associated with an increased 6-minute walk distance of 20 m (p < 0.01, adjusted R² for the model: 0.35).

Biological markers

There was a significant association between steps/day and systemic inflammation (highsensitivity C-reactive protein [hs-CRP]) in one of the studies. The authors report that every 1000-step increase was associated with a decrease of hs-CRP of 17%, after adjusting for sedentary time and other confounders. The same study did not find a significant association between MVPA and hs-CRP. No significant association was found between physical activity and measures of eosinophilic airway inflammation²⁹³.

Sedentary time and health outcomes

Detrimental associations between sedentary time and outcomes such as exercise capacity, lung function, and asthma control were reported in one cross-sectional study²⁹³. However, these associations were no longer significant after adjustment for physical activity. Doggett and Dogra³⁰⁰ reported an increased OR (95% CI) for GP consultations, 2.59 (2.34, 2.87), and hospitalizations in the past year, 1.95 (1.82, 2.08), and past 5 years, 1.13 (1.07, 1.18) (p <0.001 for all results), for people who reported >10 hours of television time a week compared with those who reported \leq 10 hours. In the next chapter, I will further explore the movement behaviours of physical activity and sedentary time in a severe asthma population compared to age- and sex-matched people without respiratory disease.

3. Chapter 3: Physical Activity and Sedentary Time in Adults with Severe Asthma

This chapter has been published in JACI: In Practice.

Citation: Citation: Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, McDonald VM.

Physical Activity and Exercise Capacity in Severe Asthma: Key Clinical Associations. J Allergy

Clin Immunol Pract. 2018 May - Jun;6(3):814-822. doi: 10.1016/j.jaip.2017.09.022.

Original Article

Physical Activity and Exercise Capacity in Severe Asthma: Key Clinical Associations

Laura Cordova-Rivera, BPhty(Hons)^{a,b,c}, Peter G. Gibson, MBBS^{a,b,c,d}, Paul A. Gardiner, PhD^{e,f}, Heather Powell, MMedSc^{b,c,d}, and Vanessa M. McDonald, PhD^{a,b,c,d} New Lambton Heights and Newcastle, New South Wales, Australia; and Woolloongabba and South Brisbane, Queensland, Australia

What is already known about this topic? People with severe asthma seem to engage in lower levels of activity than controls. Low physical activity in severe asthma is associated with impulse oscillometric airway resistance and small airway dysfunction.

What does this article add to our knowledge? Physical activity measured as steps per day is strongly associated with exercise capacity and systemic inflammation in severe asthma. To a lesser extent, activity and sedentary time are associated with asthma control, health status, and lung function.

How does this study impact current management guidelines? These results suggest that addressing inactivity and sedentary time may be a potential nonpharmacological approach in the management of severe asthma.

A short summary of this article has been highlighted in the "Latest Research" section of the

American Academy of Allergy, Asthma & Immunology (AAAAI) website.

See Appendix III for the published article.

See **Appendix IV** for the summary published in the AAAAI website.

See **Appendix V** for a detailed explanation of physical activity analyses.

This article was featured with an Editorial which has been included as Appendix VI.

Overview of this Chapter

Physical activity impairment and/or high engagement in sedentary behaviour are common findings in COPD and bronchiectasis (Chapter 1), as well as in adults with asthma (Chapter 2). These behaviours seem to be associated with important disease outcomes in asthma, such as asthma control, health status and exercise capacity. The level of activity seems also to be influenced by sex, age and disease severity. Asthma is a heterogeneous disease, and while, in general, some aspects of physical activity were less impaired in asthma than COPD, there were very few studies that addressed physical activity and sedentary time in severe asthma. This is important, because severe asthma is likely to be the stage of the disease when these behaviours may be more impaired.

To address this knowledge gap, in this chapter I will present the results from a published cross-sectional study that aimed to characterise the level of physical activity and sedentary time in a severe asthma population. The results will be compared to controls without chronic respiratory diseases, and I will assess the associations of physical activity and sedentary time with clinical and biological characteristics of the severe asthma population.

I hypothesised that people with severe asthma will present lower levels of physical activity and higher levels of sedentary time than people without respiratory diseases, and that in people with severe asthma, higher physical activity and lower sedentary time will be associated with better clinical and biological asthma characteristics.

3.1. Abstract

Background: Physical inactivity and sedentary time are distinct behaviours that may be more prevalent in severe asthma, contributing to poor disease outcomes. Physical activity and sedentary time in severe asthma however have not been extensively examined.

Objective: We aimed to objectively measure physical activity and sedentary time in people with severe asthma compared with age-matched control participants, describing the associations of these behaviours with clinical and biological outcomes. We hypothesised that people with severe asthma would be less active and more sedentary. In addition, more activity and less sedentary time would be associated with better clinical outcomes and markers of systemic and airway inflammation in people with severe asthma.

Methods: Adults with severe asthma (n = 61) and sex- and age-matched controls (n = 61) underwent measurement of lung function, exercise capacity, asthma control, health status, and airway and systemic inflammation. Physical activity and sedentary time were measured using an accelerometer.

Results: The severe asthma and control groups were matched in terms of age and sex (32 [53%] females in each group). Individuals with severe asthma accumulated less minutes per day in moderate and higher intensity activity, median (IQR) 21.9 (12.9-36.0) versus 41.7 (29.5-65.2) (p < 0.0001) and accumulated 2,232 fewer steps per day (p < 0.0002). However, they engaged in more light-intensity physical activity. No differences were found for sedentary time. In a multivariate regression model, steps per day were strongly and independently associated with better exercise capacity in participants with severe asthma (coefficient, 0.0169; 95% CI, 0.008-0.025; p < 0.001).

Conclusions: People with severe asthma perform less moderate and vigorous activity than do controls. Higher levels of activity and lower levels of sedentary time are associated with better exercise capacity, asthma control, and lower levels of systemic inflammation.

3.2. Introduction

Severe asthma is a heterogeneous and complex disease, in which diverse clinical and physiological presentations are common³³. Severe asthma represents a high patient and healthcare burden³⁵¹. It is, thus, necessary to explore novel strategies to improve health status in severe asthma and to minimise this burden. The importance of multidisciplinary management approaches in severe asthma has been recognised³⁵². Within these, the identification and subsequent management of modifiable risk factors or behaviours, such as inactivity, can be seen as an adjunct strategy for the management of the disease¹⁵⁴.

In general populations, physical activity and exercise are regarded as highly beneficial, leading to positive health outcomes^{161, 176, 353}. Engagement in excess sedentary time is an important risk factor for the development of several chronic diseases and premature mortality^{163, 164}. Physical activity is defined as any bodily movement generated by the skeletal muscles and resulting in energy expenditure. Depending on intensity and metabolic equivalent of task (MET) units, it is classified in light, moderate or vigorous physical activity, where light corresponds to the lower METs or energy expenditure¹⁶¹. Mild stretching, low impact dancing, and running correspond to examples of light, moderate and vigorous physical activity, respectively¹⁷². Sedentary time, refers to activities performed while awake, in a lying or sitting position and expending low levels of energy (≤ 1.5 METs)³⁵⁴. The physical activity and sedentary guidelines recommend engaging in at least 150 minutes/week of moderate activity, or 75 minutes/week of vigorous activity (or equivalent combination), and to sit less and for shorter periods of time³⁵⁵. In other obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD), physical inactivity and sedentary time are increased compared to healthy controls^{165, 259}. These behaviours have been independently associated with worse clinical and inflammatory outcomes²⁷¹, and increased mortality in this disease^{272, 281}. In asthma, a potential link between inactivity and mortality has not been

reported. However, higher adherence to physical activity in asthma has been associated with better asthma control²⁹⁶, reduced exacerbations³¹⁹ and reduced health care use³²². Data on inflammatory parameters are scarce³³⁵.

In severe asthma, inactivity and sedentary time are likely to be particularly extreme due to the poor disease control and associated comorbidities, such as obesity, anxiety, and depression³³. Despite this, very few studies have objectively measured physical activity in this population ²⁹¹, and the prevalence of sedentary time has not been addressed in severe asthma. In addition, very few studies have assessed the impact of these behaviours on health outcomes in the disease²⁹¹.

The aims of this study therefore were to objectively measure physical activity and sedentary time in a severe asthma population compared with age-matched controls, and to describe the associations of these behaviours with clinical measures such as asthma control, health status, exercise capacity, lung function, and markers of airway and systemic inflammation. We hypothesised that people with severe asthma are less active and more sedentary than are their age- and sex-matched counterparts, and that higher levels of physical activity and lower levels of sedentary time in severe asthma are associated with better clinical outcomes and lower levels of systemic and airway inflammation. In addition, we sought to test the hypothesis that moderate-intensity physical activity can counteract the detrimental health outcomes associated with high levels of sedentary time, as it has been previously suggested^{192, 356}.

3.3. Methods

3.3.1. Participant selection

A cross-sectional characterisation study was conducted. Adults with severe asthma and sexand age-matched controls were recruited and underwent a multidimensional assessment with objective measures of physical activity and sedentary time. Participants with severe asthma were recruited consecutively from the respiratory ambulatory care clinics at John Hunter Hospital (Newcastle, Australia) and the clinical research databases of the Priority Research Centre for Healthy Lungs at the University of Newcastle (Newcastle, Australia). Participants with respiratory physician-diagnosed severe asthma were eligible if they met the current guideline definition for severe asthma³³: prescribed Global Initiative for Asthma step 4 treatment or above, defined as 1,000 mg inhaled corticosteroid fluticasone equivalent and long-acting b2-agonists¹ had evidence of airflow limitation (FEV₁ <80% predicted), and ongoing poor asthma control (Asthma Control Questionnaire $[ACQ]^{35}$ score \geq 1.5 units or had experienced a severe exacerbation in the last 12 months requiring oral corticosteroids). Participants were clinically stable during visits (no increase in asthma symptoms in the last 4 weeks). Otherwise, their enrolment was postponed until they were stable. Exclusion criteria included malignancy with poor prognosis (< 3 months). Age- and sex-matched controls were recruited via the research database of the Hunter Medical Research Institute and community advertisement and were eligible if they were older than 18 years and non-smokers and had no objective evidence of chronic respiratory disease.

Ethics approval was granted by the human research ethics committees of the Hunter New England Local Health District (08/08/20/3.10) and the University of Newcastle, Australia. The study was conducted according to Good Clinical Practice Guidelines and each participant provided written informed consent.

3.3.2. Procedures

3.3.2.1. Clinical Measurements

Participants underwent a multidimensional assessment¹²⁵ involving measurement of height and weight, allergy skin prick tests, serum IgE, comorbidities³⁵⁷, anxiety and depression³⁵⁸, and smoking status. Further assessments are described below.

3.3.2.2. Exercise capacity

The 6-minute walk test was performed according to current guidelines³⁵⁹ to measure exercise capacity. The 6-minute walk distance (6MWD) was calculated³⁶⁰.

3.3.2.3. Asthma control and health status.

Asthma control was assessed using the ACQ³⁵. Higher scores represent poorer asthma control. Health status was measured using the Asthma Quality of Life Questionnaire (AQLQ)³⁶¹. Higher scores represent better asthma-related quality of life. A change of 0.5 or more units is considered clinically significant for both questionnaires^{362, 363}.

3.3.2.4. Airflow Limitation

Airflow limitation was assessed by measuring spirometry: FEV₁, forced vital capacity, and FEV1/forced vital capacity ratio (Medgraphics, CPFS/D USB Spirometer; BreezeSuite v7.1, MGC Diagnostics, Saint Paul, Minn)³⁶⁴. FEV₁ and forced vital capacity percent predicted were calculated using the Third National Health and Nutrition Examination Survey predicted equations³⁶⁵.

3.3.2.5. Airway Inflammation

Eosinophilic airway inflammation was assessed in 2 ways: using fraction of exhaled nitric oxide (FENO) (ANALYZER CLD 88 Series with DENOX 88; Eco Physics AG, Duernten, Switzerland)³⁶⁶ and from sputum eosinophil counts obtained from induced sputum. The

samples were induced³⁶⁷ using nebulised 4.5% or 0.9% saline if the prebronchodilator FEV₁ was less than or equal to 1 L. Lower respiratory sputum portions were selected and dispersed using dithiothreitol. Total cell counts and cell viability (Trypan blue exclusion) were performed, followed by preparation of cytospins for differential cell counts using May-Grunwald Giemsa. Airway eosinophilia was defined as sputum differential eosinophil count of greater than or equal to 3%⁶⁰.

3.3.2.6. Systemic Inflammation

Systemic inflammation was measured by peripheral blood high sensitivity C-reactive protein (hs-CRP) and analysed through the Hunter Area Pathology Service.

3.3.2.7. Physical Activity and Sedentary Time

Physical activity and sedentary time were assessed using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, Fla), a device widely used in research^{180, 188, 201}, and validated for populations with COPD²⁰⁷. This is a small device (4.6 cm x 3.3 cm x 1.5 cm) that participants were fitted with to wear on a belt around their waist, positioned over the dominant hip, for 14 consecutive days. They were instructed to remove the monitor during water-based activities and to record sleeping time and non-wear periods in a diary. The ActiGraph measures time-varying changes in force and activity levels recorded as counts, which are then summed over a user-specified time frame, or epoch²⁴⁵. The device was initialised using the ActiLife 6.11.6 Data Analysis Software (ActiGraph, Pensacola, Fla), to collect raw data (accelerations or counts) in the vertical axis at 30 Hz rate in an epoch length of time of 10 seconds. Sleep and any non-wear time were estimated from the diaries and visual examination of the ActiGraph data and removed before classification. ActiLife software was used to summarise the data. We classified time according to the widely used Freedson's 1998 cutoff points: Sedentary (0-99 counts per minute [CPM]), light physical activity (100-1951

CPM), and moderate and above physical activity (≥1952 CPM)²⁴⁶. The ActiGraph also captures steps per day. Our measures of physical activity and sedentary time were daily time in sedentary time (min/d), daily time in light physical activity (min/d), daily time in moderate-to vigorous-intensity physical activity (MVPA) (min/d), and daily number of steps (Steps [steps/d]). We reported both MVPA and Steps because although the MVPA describes the volume of moderate- to high-intensity activity and can be compared with the physical activity recommendations³⁵⁵, Steps is an output easy to interpret and could be used as a motivational and informative tool both for patients and for clinicians. Sedentary time and light physical activity were standardised for wear time by the residuals method³⁶⁸. The data were considered valid if there were recordings of 4 or more days, with 10 or more hours of recording each day.

3.3.3. Statistical Analysis

Data were analysed using STATA 13 (Stata Corporation, College Station, Texas). Values are expressed as means with CIs for parametric data and medians with interquartile range for nonparametric data. Differences between the group with severe asthma and the age-and sex-matched control group were assessed using the Student t test or the Wilcoxon rank sum test based on normality.

The associations between the different clinical and biological outcomes and the behavioural variables (sedentary time, MVPA, and Steps) adjusting for potential confounders (body mass index and current smoking status) were estimated using simple linear regression analysis. Each behavioural variable was used as a predictor of a given clinical or biological outcome (dependent variable: FEV₁% predicted, 6MWD, ACQ score, AQLQ score, FENO, and hs-CRP). Age and sex were regarded as biological confounders and included in all the models. Behavioural variables and confounders with a *p* value of less than 0.2 were also included in a

stepwise multiple linear regression analysis to identify the associations between each behavioural variable (sedentary time, MVPA, and Steps) and each biological/clinical outcome (model 1). To test whether moderate physical activity (Steps or MVPA) can counteract the detrimental health outcomes associated with sedentary time, further models were used, adjusting for sedentary time as well as other confounders (model 2). Assumptions for linear regressions were met. Collinearity between the activity (MVPA or Steps) and sedentary variables was rejected. Hs-CRP and FENO were transformed to the natural logarithm for the linear regression. This means that the dependent variable changes by 100 x [exp (coefficient) - 1] percent for each 1-unit increase in the independent continuous variable. Logistic regressions were used to test the associations of sedentary and active time with airway eosinophilia, and the association between better performance in the 6-minute walk test (defined as \geq median [\geq 499 m]) and higher engagement (\geq 30 minutes) in MVPA. Spearman rank correlation tested the relationship between activity variables and 6MWD. Results were reported as significant when *p* was less than 0.05.

3.4. Results

3.4.1. Characterisation of the study population

A total of 143 participants (those with severe asthma = 74, controls = 69) completed the study and 122 (those with severe asthma = 61, controls = 61) were included in the analysis; 21 participants were excluded because of not having valid accelerometer data (those with severe asthma = 8, controls = 5) or because they did not fulfil the disease inclusion criteria after assessment (those with severe asthma = 5, controls = 3). Participants with severe asthma had long-standing disease (median, 27 years) and poor asthma control. They also had a higher body mass index and increased prevalence of atopy, lower lung function, and higher scores of anxiety and depression compared with age- and sex-matched controls. Demographic and clinical characteristics are presented in Table 3-1

	Severe asthma	Controls	p -value
Ν	61	61	
Gender, F M (% females)	32 29 (52.46)	32 29 (52.46)	1
Age (years), median [IQR]	59 [43 - 68]	54 [34 - 63]	0.0633
BMI (kg/m ²), mean (95%CI)	30.00 (28.06, 31.89)	25.40 (24.42, 26.38)	0.0001
Smoking status,	6.6 47.5	0 29.5	
(%) current ex			
Pack year, mean (95%CI)	5.0 (2.71, 7.28)	3.0 (-0.43, 6.35)	0.322
Years since diagnosis,	27.11 [15.03 - 50.76]	n/a	
median [IQR]			
OCS, % participants medicated	39.34	n/a	
ICS* dose (mcg),	1091.10 (961.25, 1220.96)	n/a	
mean(95%CI)			
Pre-bronchodilator FEV1 (litres),	2.27 (2.05, 2.49)	3.20 (2.98, 3.42)	<0.0001
mean (95%CI)			
Pre-bronchodilator FEV ₁ %pred,	75.12 (69.41, 80.82)	96.94 (93.44, 100.45)	<0.0001
mean (95%CI)			
Pre-bronchodilator FVC (litres),	3.39 (3.13, 3.66)	4.01 (3.75, 4.27)	0.0012
mean (95%CI)			
Pre-bronchodilator FVC% pred,	87.01 (82.32, 91.71)	96.51 (93.16, 99.85)	0.0013
mean (95%CI)			
FEV1/FVC ratio, mean (95%CI)	0.67 (0.63, 0.69)	0.80 (0.78, 0.81)	<0.0001
Hs-CRP (mg/L), median [IQR]	1.8 [1 - 6]	1.1 [0.6 - 2.5]	0.0024
FeNO (ppb), median [IQR]	11.5 [5.42 - 31.45]	9.84 [4.6 - 18.3]	0.1024
Sputum Eosinophilia (≥3%),	29 (59.2)	5 (11.36)	<0.0001
n (%)			
lgE (IU/mL), median [IQR]	225.500 [70 - 498]	n/a	
Atopy, n (%)	48 (82.76)	35 (58.33)	0.0037
HADS (anxiety score),	6.67 (5.70, 7.64)	3.80 (3.02, 4.58)	<0.0001
mean (95%CI)			
HADS (depression score),	4.57 (3.81, 5.34)	1.37 (0.92, 1.82)	<0.0001
mean (95%CI)			
CCI score ≥ 1, n (%)	16 (26.70)	2 (3.28)	0.0003
ACQ (units), mean (95%CI)	2.23 (1.95 - 2.50)	n/a	
AQLQ (unit), mean (95%CI)	5.15 (4.85 - 5.46)	n/a	

Chapter 3: Physical Activity and Sedentary Time in Severe Asthma.

Severe exacerbation past year,	2 [1 - 5]	n/a	
median [IQR]			
6MWD (meters),	499 [417.7 - 542.2]	616.2 [568.4 - 659.30]	<0.0001
median [IQR]			
6MWD % predicted,	71.78 (68.13, 75.44)	85.71 (82.51, 88.92)	<0.0001
mean (95%CI)			

MI: body mass index; OCS: oral corticosteroids; ICS: inhaled corticosteroids, ICS*: Fluticasone equivalent; FEV1: forced expiratory volume in the first second; FVC: forced vital capacity; hs-CRP: high sensitivity c-reactive protein; eNO: fractional exhaled nitric oxide; IgE: immunoglobulin E; HADs: hospital anxiety and depression scale; CCI: Charlson comorbidity index, ACQ: asthma control questionnaire; AQLQ: asthma quality of life questionnaire; 6MWD: 6-minute walk distance ; n/a: not applicable or not assessed. Bold indicates statistical significance (p < 0.05)

3.4.2. Physical activity and sedentary time in the group with severe asthma and the age- and sex-matched control group

Compared with controls, people with severe asthma performed less activity of at least moderate intensity. The group with severe asthma had a median difference of 19.8 fewer minutes of MVPA per day (p < 0.0001) and 2455 fewer steps per day (p < 0.001). Conversely, the population with severe asthma engaged in more light physical activity, with a mean (95% CI) difference of 21.7 (2.2-41.1) more minutes per day (p = 0.029). No statistically significant differences were found in sedentary time between the 2 populations (Figure 3-A).

Figure 3-A: Sedentary time (a), light PA (b), moderate and vigorous PA (c) and steps/day (d) in severe asthma and age- and sex-matched controls.

Values reported as mean \pm SD or median [interquartile range]. Number of participants in each group (n= 61). HC: controls, SA: severe asthma; PA: physical activity

3.4.3. Associations of physical activity and sedentary time with clinical outcomes and biological markers in participants with severe asthma

3.4.3.1. Exercise capacity.

Physical activity (Steps and MVPA) and sedentary time were significantly associated with exercise capacity, explaining 35.25%, 29.69%, and 27.3% of the adjusted variance in the 6MWD, respectively (Table 3-2/model 1). For every additional 1,000 steps, there was a 16.9-m increase in the 6MWD. For every minute increase in sedentary time, there was a decrease of 0.47 m in the 6MWD. Accordingly, every additional hour spent sedentary is associated with a 28.2-m reduction in the 6MWD.

There was a linear relationship between Steps and the 6MWD (Figure 3-B, a). For MVPA (Figure 3-B, b) there was also an apparent threshold effect where those participants with a 6MWD performance of greater than or equal to the median (499 m) were also the participants engaging daily in 30 minutes or more of MVPA, a volume of activity that fits within the physical activity recommendations12 (OR, 6.09; p = 0.005). This suggests that a value of around 500 m in the 6MWD could identify individuals engaging in recommended levels of MVPA. Simultaneously including sedentary time with MVPA or Steps in the model attenuated the associations of MVPA and sedentary time to the null. However, the association of Steps with exercise capacity remained similar and still statistically significant (Table 3-2/model 2). A 1,000-step increase was associated with better performance in the 6MWD by 21 m. This suggests that regardless of the time spent sedentary, higher levels of walking were still strongly associated with a significant improvement in exercise capacity.

A, Rho=0.453; B, Rho=0.502 (p < 0.001 both)

Model 1.	Models for 6MWD					
	Coefficient (95%CI)	Significance	Adj. R2			
ST	-0.47 (-0.79, -0.14)	0.006	0.27			
MVPA	1.70 (0.64, 2.75)	0.002	0.30			
Steps	0.01 (0.00, 0.02)	0.000	0.35			
Model 2						
Steps	0.02 (0.00, 0.04)	0.010				
ST	0.18 (-0.39, 0.75)	0.531	0.35			
MVPA	1.24 (-0.32, 2.80)	0.117				
ST	-0.19 (-0.66, 0.28)	0.429	0.29			

Table 3-2: Association of physical activity and sedentary time with exercise capacity as 6MWD.

BMI, Body mass index; PA, physical activity; ST, sedentary time. Model 1 = each behavioural variable (ST, MVPA, or Steps) as a predictor of exercise capacity. Model 2 = PA (Steps or MVPA) as a predictor of exercise capacity, after adjustment for ST and confounders. Models adjusted for age, sex, and BMI. Bold indicates statistical significance (p < 0.05).

3.4.3.2. Lung function, asthma control, and health status.

The activity and sedentary variables were also significantly associated with lung function, asthma control, and health status, except for Steps and $FEV_1\%$ predicted, and sedentary time and the AQLQ score. In contrast to the impact of activity on exercise capacity, the effect on these clinical outcomes was weaker but nonetheless statistically significant and biologically plausible. For every 10-minute increase in MVPA, the ACQ score decreased (improved) by 0.21 units, whereas the AQLQ score increased (improved) by 0.16 units (Table 3-3/model 1). These results suggest that a 25-minute increase in MVPA is associated with a clinically significant improvement in ACQ score (0.52 units). Regarding sedentary time, every 100minute increase in this behaviour is associated with a clinically significant decline in the ACQ score (0.51 units). The only activity variable that remained statistically significant after adjustment for sedentary time was ACQ score and MVPA. Every 15-minute increase in MVPA was associated with a decrease (improved) of 0.29 units in ACQ score (Table 3-3/model 2). The coefficient of sedentary time was also attenuated to the null in this model. In the remaining models, the activity (MVPA or Steps) and sedentary variables together were mutually excluded. Nevertheless, in most of the models, the direction of the coefficients indicated that the decrease in sedentary time and the increase in activity led to modest improvements in clinical marker

Model 1	Models for	Models for FEV ₁ (%)		Models for A	Models for AQLQ (units)		Models for ACQ (units)		
	Coefficient (95%CI) *	Sig	Adj. R ²	Coefficient (95%CI) *	Sig	Adj. R ²	Coefficient (95%CI) *	Sig	Adj. R ²
ST	-7.90 (-15.63, -0.17)	0.045	0.10	-0.35 (-0.76, 0.04)	0.081	0.15	0.51 (0.14, 0.89)	0.007	0.12
MVPA	28.69 (3.31, 54.07)	0.027	0.11	1.59 (0.29, 2.89)	0.018	0.19	-2.15(-3.33, -0.97)	0.001	0.19
Steps	0.17 (-0.03, 0.38)	0.096	0.08	0.01 (0.00,0.02)	0.015	0.20	-0.01(-0.02, -0.00)	0.005	0.13
Model 2									
Steps	-0.00(-0.38, 0.37)	0.994		0.01(-0.00, 0.03)	0.078	0.40	-0.00(-0.02, 00.0)	0.304	0.40
ST	-7.95(-22.25, 6.35)	0.27	0.08	0.19 (-0.53, 0.23)	0.597	0.19	0.21 (-0.47, 0.90)	0.537	0.12
MVPA	20.65 (-17.43, 58.73)	0.282	0 10	1.59 (-0.37, 3.55)	0.111	0 18	-1.94(-3.69, -0.18)	0.032	0.18
ST	-3.27 (-14.78, 8.23)	0.571	0.10	-0.00 (-0.59, 0.59)	0.998	0.10	0.08(-0.44, 0.62)	0.740	

Table 3-3: Association of physical activity and ST with clinical outcomes.

Adj., Adjusted; BMI, body mass index; Sig., significance; ST, sedentary time. For rationale of models 1 and 2, refer to captions in Table 3.2. All models adjusted for age and sex. AQLQ score adjusted for smoking status. ACQ score adjusted for smoking status and BMI. Bold indicates statistical significance (p < 0.05). *Coefficients and CI expressed as x 10-².

3.4.3.3. Biological markers.

No relationship was found between the behavioural variables and eosinophilic airway inflammation measured by sputum cell counts (Table 3-4). In simple linear regression analyses, the significance level for FENO was more than 0.2 and thus not included in the stepwise model.

Steps were significantly associated with hs-CRP. For every increase of 1000 steps, the hs-CRP was reduced by 13%. No relationship was found between hs-CRP and MVPA or sedentary time (Table 3-5/model 1). Only Steps remained significantly associated with hs-CRP after adjustment for sedentary time. For every increase of 1000 steps, the hs-CRP was reduced by 17% (Table 3-5/model 2). The coefficients for the associations of sedentary time were attenuated to the null. The model explained 48.6% of the variance in systemic inflammation.

Table 3-4: Association of physical activity and ST with airway inflammation.

Simple logistic regression airway eosinophilia						
	Odds ratio (95%Cl)	Sig	Adj. R ²			
ST	1.00 (0.99, 1.01)	0.315	0.02			
Μνρα	1.01(0.98, 1.035)	0.470	0.01			
Steps	1.00(0.99, 1.00)	0.246	0.02			

ST, Sedentary time. Airway eosinophilia defined as eosinophil count of \geq 3% in sputum cell

Model 1	SLR models for Ln-FeNO			Models for Ln_hs-CRP		
	Coefficient (95%CI) *	Sig	Adj. R ²	Coefficient (95%CI) *	Sig	Adj. R ²
ST	1.92 (-2.23, 6.07)	0.358	-0.00	3.36(-0.08, 6.80)	0.56	0.45
Μνρα	-1.02(-14.74, 12.70)	0.882	-0.02	-10.47 (-21.79, 0.84)	0.069	0.45
Steps	-0.02(-0.13, 0.08)	0.617	-0.01	-0.13(-0.22, -0.03)	0.006	0.49
Model 2						
Steps	N/D			-0.17(-0.34, -0.00)	0.038	0.40
ST				-2.09(-8.24, 4.04)	0.497	0.49
Μνρα	N/D			-5.15(-21.95, 11.63)	0.54	0.45
ST				2.20 (-2.92, 7.32)	0.393	0.45

Table 3-5: Association of physical activity and sedentary time with inflammatory biomarkers.

Adj., Adjusted; BMI, body mass index; Ln_FENO, natural logarithm FENO; Ln_hs-CRP, natural logarithm hs-CRP; ND, not done; Sig., significance; SLR, simple linear regression analysis; ST, sedentary time. For rationale of models 1 and 2, refer to captions in Table 3.2. Ln_hs-CRP was adjusted for age, sex, and BMI. Bold indicates statistical significance (p < 0.05). *Coefficients and CI expressed as x 10-³.

3.5. Discussion

This study has described the extent to which individuals with severe asthma engage in physical activity and sedentary time compared with a sex- and age-matched control population. We have demonstrated that people with severe asthma are considerably less active. In addition, we found that levels of activity and sedentary time are strongly and independently associated with exercise capacity, and to a lesser extent with other important clinical and biological outcomes. Our results also demonstrate that the detrimental effects of sedentary time are attenuated when participants engage in some physical activity, especially of moderate or higher intensity.

In terms of the levels of activity and sedentary time, our results are consistent with those of several studies conducted in patients with mild and moderate asthma using both objective and subjective activity measurement^{291, 296, 299, 300, 303}. However, very few studies have

objectively examined physical activity in patients with severe asthma²⁹¹, and to our knowledge this is the first study to report levels of sedentary time in this population. Our finding that people with severe asthma move 31.4% fewer steps per day compared with a control group is consistent with the finding of a recent study that reported 31% lower steps²⁹¹. However, in comparison to Bahmer et al²⁹¹, our study reported a larger difference in MVPA between people with severe asthma and controls (47.5% vs 23%), and the participants in our study were less active than the participants in the Bahmer et al²⁹¹ study (22 min/d vs 125 min/d of MVPA). It should be noted though that the authors²⁹¹ used a different device to measure MVPA (SenseWear Pro Armband; BodyMedia, Pittsburgh, Pa). Studies using the ActiGraph in a bronchiectasis population²⁸⁴ have reported similar activity results as our study.

We observed that the difference in physical activity between patients with severe asthma and controls is larger for higher intensities of activity than for Steps. This finding has also been reported in patients with mild to moderate COPD²⁶⁹, and suggests that activity limitation is first manifested at higher intensities of activity rather than lighter. In fact, our population with severe asthma accumulated more minutes in light physical activity than did healthy controls.

In the general adult population, a widely promoted target for a desirable level of activity is 10,000 steps³⁶⁹. Our population with severe asthma achieved only 5362 daily steps, thus a little more than half of the recommended level, and similar to the level reported in patients with moderate to severe COPD^{266, 269} and patients with bronchiectasis²⁸⁴. This suggests that people with obstructive airway disease regardless of diagnosis are engaging in levels of activity that are far below those recommended for adult populations. Direct comparisons between these populations have not yet been reported.

The beneficial role of physical activity and exercise on outcomes such as exacerbations, asthma control, cardiopulmonary fitness, and health status has been previously described in populations with general asthma^{86, 87, 313, 319, 322}. However, to our knowledge, this is the first time that the association between exercise capacity and objectively measured physical activity and sedentary time has been reported in patients with severe asthma. Sedentary time attenuated the associations of MVPA with exercise capacity but not the associations of Steps with exercise capacity. This suggests that the greatest benefit on exercise capacity is achieved by performing activity of light to moderate intensity distributed throughout the day, rather than more vigorous but sporadic activity.

The 6MWD has been identified as a predictor of survival in COPD³⁷⁰ and associated with hospitalisation and increased mortality³⁷¹⁻³⁷³. In COPD, a 6MWD of 350 m or less is regarded as poor performance³⁷². We found that individuals with a 6MWD of 499 m or more were 6 times more likely to engage in recommended levels of MVPA (\geq 30 minutes daily)³⁵⁵, suggesting that this distance may be a suitable cutoff for people with severe asthma. However, this requires further investigation. A difference of 30 m or more has been proposed as the minimal clinically important difference, and furthermore a decrease of this magnitude is associated with increased risk of death in COPD³⁷⁴. To date the 6MWD minimal clinically important difference of 22 m (after adjusting for sedentary time) indicates the potential benefits of targeting physical activity as a modifiable behaviour in severe asthma.

Our study also found that physical activity and sedentary time are associated with asthma control, health status, and lung function. The strength of the associations was rather modest and a very large change in activity (>4,000 Steps or >25 minutes of MVPA) was necessary to

reach the 0.5 unit minimal clinically important difference defined for the ACQ³⁶³ and the AQLQ³⁶². However, because the promotion of activity in severe asthma should be considered as an adjunct treatment, it may contribute to improved disease control when combined with pharmacological and other risk factor management.

We did not find any association between the activity or sedentary variables and measures of eosinophilic airway inflammation. However, it should also be noted that our population was on maximum-intensity inhaled corticosteroid therapy, and this may have modified any potential relationship between the behavioural variables and airway eosinophilia or FENO. This is further supported by the finding that FENO levels, a marker of corticosteroid responsiveness³⁶⁶, were not different between the severe asthma and control populations, suggesting that FENO was suppressed by inhaled corticosteroid treatment. These findings suggest that the pathway of inactivity in severe asthma may be more related to breathlessness and/or exercise capacity than to airway inflammation.

Others have reported the positive impact of exercise on markers of airway inflammation (FENO and sputum eosinophilia). This may relate to the baseline characteristics of the participants rather than exercise itself as studies have reported decrease in FENO after a bout of exercise in physically inactive people with asthma and not in those who were active³⁷⁵, and participants with increased inflammatory parameters (FENO \geq 26 ppb and \geq 3% sputum eosinophils) had the greatest improvement after exercise training⁸⁷. Whether the positive effects of exercise on airway inflammation can be reproduced by shifting to higher and extended levels of daily physical activity needs further investigation.

In terms of systemic inflammation, we found that more steps per day were associated with lower hs-CRP levels, after adjustment for body mass index, sedentary time, and other confounders. This suggests a potential benefit of physical activity as a complementary therapy to target systemic inflammation in severe asthma. The role of hs-CRP in the clinical management of severe asthma is still unclear. However, there are data linking systemic inflammation to increased risk of exacerbation¹⁰, and to increased asthma severity³⁷⁶. Exercise also appears to have anti-inflammatory effects³⁷⁷. In COPD, it has been demonstrated that higher levels of physical activity are independently associated with lower levels of hs-CRP^{278, 378}. However, very little data exist on systemic inflammation and exercise in asthma. One study reported a reduction in serum proinflammatory cytokines (IL-6 and monocyte chemotactic protein 1) after aerobic training⁸⁷. Interestingly, Scott et al³⁷⁹ reported decreases in serum IL-6 levels with exercise and diet, but not with exercise alone, and no change in hs-CRP with either intervention. Our findings may support the idea that activity carried out at a moderate level has a more beneficial effect on systemic inflammation than more strenuous, but acute, activity.

Our study has some limitations. Because of its cross-sectional design, it is not possible to infer causality of our findings. We chose to use the ActiGraph because despite of being developed as a research tool, it is becoming increasingly used in population studies^{180, 356} as well as in clinical setting studies²⁸⁴. This device has been validated in populations with COPD, being one of the most accurate in detecting different walking speeds²⁴² and estimating activity energy expenditure^{207, 243}. However, sedentary time has been shown to be more accurately measured with postural-based accelerometers, such as activPAL²⁰⁹. Also, there are conflicting data regarding the most suitable cutoff point for ActiGraph to measure sedentary time in adult populations, with cutoff points ranging from 25 to 500 CPM^{209, 255-257}. It has been suggested that both activity and sedentary parameters can vary greatly depending on the cutoff point used²⁵⁷. The less than 100 CPM cutoff point that we used has been shown to be detrimentally associated with cardiometabolic measures in adults¹⁸⁸, and previously reported in large population studies²⁰¹. Thus, our prevalence results could be compared with

previous estimates in the literature^{188, 229, 284}. In addition, considering the scarce information available on sedentary time in patients with severe asthma, these data provide useful insight into how this behaviour is associated with both different spectrums of activity and different disease outcomes. Last, we acknowledge that we have not addressed several comorbidities, such as cardiovascular diseases and musculoskeletal conditions that may negatively impact on the level of activity and sedentary time or interact with some of the dependent outcomes. This is an area for future research. These conditions, however, are not more prevalent in patients with severe asthma than in a control group³³, and so our study design would account for these issues.

3.6. Conclusions

This study reports novel data on physical activity and sedentary time in patients with severe asthma. We found that severe asthma is associated with lower levels of MVPA. Higher levels of activity and lower levels of sedentary time were linked to better exercise capacity, asthma control, and decreased systemic inflammation. Our results highlight a need to develop and test interventions in patients with severe asthma that aim to improve exercise capacity and systemic inflammation by increasing walking and decreasing sedentary time and improve asthma control by increasing the volume of MVPA.

I have now reviewed the levels of physical activity and sedentary time in asthma populations and addressed these behaviours in participants with severe asthma, confirming that the negative impact of the disease on these behaviours is similar to other obstructive airway diseases in terms of prevalence and/or association with disease characteristics. However, direct comparisons between people with severe asthma, COPD and bronchiectasis have not yet been reported. In order to address this gap in the literature, in Chapter 4 I will characterise physical activity in an obstructive airway disease population composed of people with severe asthma, COPD and bronchiectasis.

4. Chapter 4: Physical Activity in Obstructive Airway Diseases

This chapter has been published in Respirology.

Citation: Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. *Physical Activity Associates with Disease Characteristics of Severe Asthma, Bronchiectasis and COPD*. Respirology. 2018 Nov. doi: 10.1111/resp.13428.

See Appendix VII for the published article.

This article was featured with an Editorial which has been included as Appendix VIII.

Overview of this Chapter

Severe asthma, COPD and bronchiectasis share features such as airflow limitation, reduced exercise capacity, dyspnoea and systemic inflammation. These shared characteristics are likely to impact on the patients' physical activity level.

As reviewed in Chapter 1, the interrelationship that exists between disease characteristics and the level of physical activity in people with COPD has been widely characterised. These findings have highlighted the importance of promoting physical activity as a component of disease management in this population.

In severe asthma and bronchiectasis, however, physical activity impairment has not been extensively studied, and thus the interrelationship with disease characteristics is less clear.

Considering that data characterising physical activity in different OAD are necessary for the development of interventions addressing this impairment in the whole OAD population, in this chapter I aim to characterise the prevalence and intensity of physical activity in people with severe asthma and bronchiectasis, compared to people without respiratory disease and to people with moderate to severe COPD. Additionally, I aim to test whether physical activity is associated with shared clinical and biological characteristics found in OAD.

I hypothesise that people with bronchiectasis and severe asthma will present lower levels of physical activity compared to people without respiratory disease, but their degree of physical activity impairment would not be as severe as that found in participants with moderatesevere COPD. Additionally, in people with obstructive airway diseases, physical activity will be associated with shared clinical disease characteristics.

With these data, I aim to provide a more complete picture of the interrelationship between clinical associations of physical activity in OAD.
4.1. Abstract:

Background: Physical activity in obstructive airway diseases (OAD) is likely to be impaired. However, this has not been extensively studied outside of chronic obstructive pulmonary disease (COPD). We describe physical activity levels in severe asthma and bronchiectasis compared to moderate-severe COPD and to controls and tested the cross-sectional associations of physical activity (steps/day) with shared disease characteristics in the OAD group.

Method: Adults with OAD (SA=62, COPD=67, bronchiectasis=60) and controls (n=63) underwent a multidimensional assessment, including device-measured physical activity levels.

Results: The OAD group included 189 participants (58.7% female), median [IQR] age 67 [58 -72] years and mean forced expiratory volume in the first second percentage predicted (FEV₁%) of 69.4%. Demographic characteristics differed between groups. Compared to controls (52.4% female, aged 55 [34–64] years, median 7640 steps/day), those with severe asthma, bronchiectasis and COPD accumulated less steps/day: median difference -2255, -2289, and -4782, respectively ($p \le 0.001$). Compared to COPD, severe asthma and bronchiectasis participants accumulated more steps/day: median difference 2375 and 2341, respectively ($p \le 0.001$). No significant differences were found between the severe asthma and bronchiectasis group. Exercise capacity, FEV₁% predicted, dyspnoea and systemic inflammation differed between groups, but were each significantly associated with steps/day in OAD. In the multivariable model adjusted for all disease characteristics, exercise capacity and FEV₁% predicted remained significantly associated.

Conclusion: Physical activity impairment is common in OAD. The activity level was associated with shared characteristics of these diseases. Interventions to improve physical activity should be multifactorial and consider the level of impairment and the associated characteristics.

4.2. Introduction

Asthma, chronic obstructive pulmonary disease (COPD) and bronchiectasis are obstructive airway diseases (OAD) that cause significant burden to individuals and health systems²³.

Whilst these conditions have different pathophysiological processes⁴, there are commonalities. They are all chronic conditions affecting the lower respiratory airways^{23, 125}, and share similar clinical characteristics. Additionally, exacerbations are common, increasing the disease burden²³. These shared characteristics may challenge the person's ability to perform daily activities, and often lead to deconditioning and poor health status.

It is well established that individuals with COPD are considerably less active than people without respiratory disease^{165, 259, 270}, and that the degree of physical activity is associated with important disease outcomes²⁷¹. The focus in COPD now is to develop and test interventions that improve physical activity and decrease sedentary time^{168, 380}. In severe asthma and bronchiectasis however, there has been little research that objectively characterises these behaviours, or that have focused on interventions to improve them⁸⁴. In order to develop such interventions, data characterising physical activity are needed. Furthermore, the extent to which physical activity impairment is associated with shared clinical and biological characteristics in OAD populations is also unknown. Understanding these similarities and differences is important, in order to develop targeted interventions.

We have previously reported^{293, 381} that people with severe asthma have lower physical activity levels compared to controls, and that this behaviour is associated with important disease outcomes. In the present study, we aimed to characterise the degree and intensity of physical activity in people with severe asthma and bronchiectasis, compared to people

with moderate-severe COPD and to people without respiratory disease. In addition, we sought to understand whether the physical activity impairment likely to be found in OAD is associated with shared disease characteristics. We hypothesised that participants with severe asthma and bronchiectasis would engage in more physical activity than participants with COPD; but in lower activity levels than controls. Additionally, we hypothesised that in the OAD group, physical activity would be associated with characteristics shared by the three diseases.

4.3. Methods

Adults (≥18 years) with and without respiratory disease were recruited between March 2014 and June 2017 to a cross-sectional study that included measurement of physical activity.

Participants with physician-diagnosed^{2, 33} severe asthma, bronchiectasis or moderate-severe COPD were recruited via the respiratory clinics at John Hunter Hospital (Newcastle, Australia), and the research databases of the Centre for Healthy Lungs and the Hunter Medical Research Institute (HMRI). Controls were recruited via the research database of the HMRI. Participants were required to be without exacerbation within the 4-weeks prior the study visits. Detailed inclusion and exclusion criteria are described in *S-1, as a <u>Supplementary</u> information*.

Ethics approval was granted from the Human Research Ethics Committees of the Hunter New England Local Health District (severe asthma, bronchiectasis, and controls ([08/08/20/3.10]; COPD [12/12/12/3.06]) and the University of Newcastle. The study was conducted according to Good Clinical Practice Guidelines and each participant provided written informed consent.

4.3.1. Measurements

Participants underwent a multidimensional assessment¹²⁵ involving measures of body mass index (BMI), comorbidities³⁵⁷, exacerbations, respiratory health status³⁸², and smoking status. Further assessments included:

4.3.1.1. Exercise capacity

The 6-minute walk test (6MWT) was performed according to current guidelines³⁵⁹. The predicted 6-minute walk distance (6MWD) was calculated³⁶⁰.

4.3.1.2. Airflow limitation

Spirometry was used to measure post-bronchodilator forced expiratory volume in one second (FEV₁), forced vital capacity (FVC), and FEV₁/FVC ratio (Medgraphics, CPFS/D[™] USB Spirometer, BreezeSuite v7.1, MGC Diagnostics, Saint Paul, MN, USA). Predicted values were calculated using NHANES III reference equations³⁶⁵.

4.3.1.3. Dyspnoea

Scores ≥ 2 from the modified Medical Research Council Dyspnoea Scale (mMRC)¹¹⁸ defined positive presence of dyspnoea. This cutoff is associated with higher risk of mortality in COPD³⁸³.

4.3.1.4. Airway inflammation

Eosinophil and neutrophil counts were obtained from induced sputum samples using nebulised 4.5% saline, or 0.9% according to FEV_1^{384} . Total cell counts and cell viability (Trypan blue exclusion) from lower respiratory sputum portions were performed, followed by cytospins' preparation for differential cell counts using May-Grunwald–Giemsa.

4.3.1.5. Systemic inflammation

High-sensitivity C-reactive protein (hs-CRP) was measured in peripheral blood and analysed using enzyme-linked immunosorbent assay.

4.3.2. Physical activity

Physical activity data were obtained from accelerations detected in the vertical axis using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, FI) accelerometer. The device was initialised²⁴⁵ to collect accelerations at 30 Hz rate in epochs of 10-seconds. Participants wore the monitor for 14 consecutive days on a belt around their waist over the dominant hip; and removed the monitor during water-based activities. Data were summarised using the ActiLife 6.11.6 Data Analysis Software²⁴⁵ and were considered valid if there were \geq 4 days of recordings, with \geq 10 hours of recording/day. Non-wear time was removed²³¹ from the analysis. Moderate and vigorous physical activity (MVPA) was categorised according to the Freedson 1998 cut-point²⁴⁶ (MVPA \geq 1952 counts/minute).

For physical activity levels, we reported the average steps/day and the mean minutes/day in MVPA. For the disease outcomes analysis, we reported steps/day, since it is an output easy to compare and that could be used as a motivational and informative tool for patients and clinicians³⁶⁹.

4.3.3. Statistical Analysis

Data were analysed using STATA 13 (Stata Corp., College Station, TX, USA). Differences between the severe asthma, bronchiectasis, COPD, and the control groups were assessed using one-way analysis of variance, Kruskal–Wallis or Chi-square test as appropriate.

Analyses of the associations between physical activity and shared disease characteristics were performed by disease, and in the combined diseases group (OAD group). The associations between physical activity (dependant variable), disease characteristics (independent variables: 6MWD, FEV₁%predicted, dyspnoea score ≥ 2 , hs-CRP, sputum eosinophils and sputum neutrophils), and potential confounders (current smoking and BMI) were separately estimated in the OAD group using simple linear regression analysis against steps/day. Confounders (BMI) and each independent variable with a p-value < 0.2 (6MWD, FEV₁%predicted, dyspnoea, sputum eosinophils, hs-CRP) were included into separate linear regression analyses to identify variables associated with physical activity. Age and sex were included in all models as biological confounders. We tested the interaction effects between diagnosis and each independent variable on steps/day (S-2: Supplementary information). A final model including all the independent variables was used to identify independent associations with physical activity in the OAD group. The association between exacerbation and physical activity was also tested in simple linear regression analyses (S-3 & S-4; Supplementary information). Assumptions for linear regressions were met. Based on the observed effect size in the final regression model (f^2 =0.916, adjusted R²= 0.4782, α = 0.05), the study has 100% power to detect the effect. Spearman's rank correlation tested relationships between steps/day and disease outcomes. A p-value <0.05 was considered statistically significant.

4.4. Results

A total of 296 participants (severe asthma=75, bronchiectasis=67, COPD=83, controls=71) completed the study and 252 (severe asthma=62, bronchiectasis=60, COPD=67, controls=63) were included in the analysis. Reasons for exclusion were invalid accelerometer data (severe asthma=8, bronchiectasis=5, COPD=4, controls=5), not fulfilling the inclusion criteria after

assessment (severe asthma=5, bronchiectasis=2, controls=3) or inability to complete all assessments (COPD=12).

The clinical characteristics of each group differed (Tables 4-1 and 4-2). As expected, the disease groups had worse clinical/biological characteristics than controls. The severe asthma and COPD groups had higher BMI, and both the bronchiectasis and COPD group were older than controls. Participants were treated according to current guidelines.^{2, 33}

	Severe asthma [#] (n=62)	Bronchiectasis [#] (n=60)	COPD ^x (n=67)	Control ^{&} (n=63)	p- value*	OAD (n=189)
Age, years	58.0 [43.0 – 68.0] ^{×#}	68.0 [62.0 – 73.0] ^{&#</sup></td><td>70.0 [64.0 - 75.0]<sup>&</sup></td><td>55.0 [34.0 – 64.0]</td><td><0.0001</td><td>67.0 [58.0 - 72.0]</td></tr><tr><td>Females, %</td><td>51.6#</td><td>86.7<sup>&#x</sup></td><td>38.8</td><td>52.4</td><td><0.001</td><td>58.7</td></tr><tr><td>BMI, kg/m<sup>2</sup></td><td>28.6 [24.6 - 33.7]<sup>&#</sup></td><td>25.6 [21.7 - 27.6]<sup>x#</sup></td><td>30.1 [26.9 - 33.5]<sup>&</sup></td><td>25.3 [22.3 - 27.6]</td><td><0.0001</td><td>27.7 [23.8 - 31.6]</td></tr><tr><td>Years since diagnosis</td><td>27.6 [15.1 – 51.0]</td><td>16.0 [5.0 - 57.0]</td><td>6.0 [3.0 – 14.0]</td><td>N/A</td><td></td><td>14.6 [5.0-41.0]</td></tr><tr><td>Current smoker, %</td><td>8.1</td><td>1.7</td><td>0.0</td><td>0.0</td><td>0.031</td><td>3.2</td></tr><tr><td>Smoking Pack/years</td><td>0.0 [0.0 - 5.4]<sup>x</sup></td><td>0.0 [0.0 - 2.1]<sup>x</sup></td><td>42.6 [31.3 - 70.5]<sup>&</sup></td><td>0.0 [0.0 – 3.0]</td><td><0.0001</td><td>5.0 [0 – 36.0]</td></tr><tr><td>CCI score ≥1, %</td><td>27.9</td><td>35.0</td><td>100.0</td><td>3.17</td><td><0.001</td><td>55.9</td></tr><tr><th>Medication, % participant prescrib</th><th>ed</th><th></th><th></th><th></th><th></th><th></th></tr><tr><td>OCS, %</td><td>40.3</td><td>3.0</td><td>3.0</td><td>0.0</td><td></td><td>15.0</td></tr><tr><td>Combination ICS/LABA, %</td><td>97.0</td><td>63.3</td><td>70.2</td><td>0.0</td><td></td><td>77.0</td></tr><tr><td>ICS, %</td><td>13.0</td><td>5.0</td><td>16.4</td><td>0.0</td><td></td><td>12.0</td></tr><tr><td>LAMA, %</td><td>52.0</td><td>38.3</td><td>91.0</td><td>0.0</td><td></td><td>61.4</td></tr><tr><td>LABA, %</td><td>0.0</td><td>2.0</td><td>16.4</td><td>0.0</td><td></td><td>6.4</td></tr><tr><td>Omalizumab, %</td><td>11.3</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td><td>3.7</td></tr><tr><td>Mepolizumab, %</td><td>6.5</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td><td>2.1</td></tr></tbody></table>}				

Results reported as median [interquartile range] or percentage. OAD group not included in the hypothesis tests. *P-value correspond to the differences within group (COPD, SA, BE, Controls). Between groups differences: X = result statistically significant different with COPD group; & = result statistically significant different with COPD group; & = result statistically significant different with Control group; #= result statistically significant different between severe asthma and bronchiectasis group. COPD: chronic obstructive pulmonary disease; OAD: obstructive airway disease group; BMI: body mass index; CCI: Charlson Comorbidity Index; OCS: oral corticosteroid; ICS/LABA: inhaled corticosteroid/ long acting beta agonist; LAMA: long-acting muscarinic antagonist.

	Severe asthma [#]	Bronchiectasis [#]	COPD ^x	Control ^{&}	p- value*	OAD
	(n=62)	(n=60)	(n=67)	(n=63)		(n=189)
Post FEV ₁ % predicted, %	75.8 (70.4, 81.3) ^{&x}	76.9 (70.9, 82.8) ^{&x}	56.4 (52.5 <i>,</i> 60.3) ^{&}	100.6 (96.7, 104.5)	<0.0000	69.4 (66.2, 72.5)
Post FVC % predicted, %	87.5 (83.1, 91.8) ^{&x}	81.1 (76.3, 86.0) ^{&}	78.7 (74.6, 82.7) ^{&}	96.6 (93.2, 100.1)	<0.0000	82.3 (79.7, 84.9)
Post FEV ₁ /FVC ratio	0.66 [0.56 - 0.77] ^{&x}	0.73 [0.65 - 0.79] ^{&x}	0.56 [0.44 - 0.67]&	0.82 [0.77 - 0.86]	<0.0001	0.66 [0.55 - 0.76]
6MWD, m	477.8(452.0, 503.5) ^{&x}	453.4 (424.2, 482.6) ^{&x}	383.5 (353.5, 413.6) ^{&}	609.5 (589.0, 629.9)	<0.0000	435.9(418.6, 453.1)
6MWD % predicted, %	72.1 [64.7 - 82.6] ^{&}	76.6 [62.9 - 82.0] ^{&X}	66.0 [46.9 - 77.2] ^{&}	86.8 [77.9 - 92.7]	<0.0001	70.9 [59.1 - 80.1]
Dyspnoea score ≥ 2, %	50.0 ^{&}	32.0 ^{&X#}	53.0 ^{&}	0.0	<0.001	45.2
GOLD quadrant, %	N/A	N/A	B= 17.9; C=4.5; D=76.1	N/A		N/A
GOLD stage, %	N/A	N/A	2= 64.2; 3=30.0; 4=6.0	N/A		
Oxygen dependent, %	0	3.3	3.8	0	<0.001	2.6
Severe exacerbation, n	190 ^x	18 ^{#X}	44	0	<0.001	
SGRQ, score	41.2 [27.5 - 55.1] ^x	36.0 [23.8 - 52.5] ^x	50.3 [39.5 - 66.6]	N/A	<0.0001	45.2 [32 - 58]
Hs-CRP, mg/L	1.8 [1.0 – 6.0] ^{&}	2.8 [1.4 – 7.0] ^{&}	3.8 [1.9 – 10.0] ^{&}	1.1 [0.6 - 2.5]	<0.0001	2.9 [1.4 - 7.8]
Eosinophils, %	3.6 [0.8 - 13.5] ^{&#</sup></td><td>1.3 [0.6 -2.1]&#</td><td>1.8 [0.75 - 3.8]<sup>&</sup></td><td>0.45 [0.0 – 1.0]</td><td><0.0001</td><td>1.5 [0.75 - 4]</td></tr><tr><td>Neutrophils, %</td><td>35.0 [17.8 - 59.3]#</td><td>78.1 [61.3 - 85.3]<sup>&x#</sup></td><td>48.8 [29.5 - 71.8]<sup>&</sup></td><td>27.3 [15.5 - 42.8]</td><td><0.0001</td><td>53.3 [28.5 - 79.3]</td></tr></tbody></table>}					

Table 4-2: Clinical and biological characteristics.

Results reported as mean (95% confidence interval) (post FEV1% predicted, FVC % predicted and 6MWD), median [interquartile range] or percentage. OAD group not included in the hypothesis tests. *Pvalue correspond to the differences within group (COPD, SA, BE, Controls). Between groups differences: X = result statistically significant different with COPD group; & = result statistically significant different with COPD group; # = result statistically significant different between severe asthma and bronchiectasis group. COPD: chronic obstructive pulmonary disease; OAD: obstructive airway disease group; FEV1: forced expiratory volume in the first second; FVC: forced vital capacity; 6MWD: 6-minute walk distance; GOLD: Global Initiative for Chronic Obstructive Lung Disease, Severe exacerbation: total number in last year as per severe asthma and GOLD guidelines definitions (bronchiectasis as per GOLD guidelines), SGRQ: Saint George Respiratory Questionnaire; hs-CRP: high sensitivity C-reactive protein.

4.4.1. Characterisation of physical activity

Compared to controls, the severe asthma and bronchiectasis groups had lower physical activity, with a median difference of around 2270 less steps/day (p < 0.001 both), and a median of 19.7 (p = 0.006) and 26.5 (p < 0.0001) less minutes/day of MVPA, respectively. Compared to COPD, the severe asthma and bronchiectasis groups had higher physical activity levels, with a median of 2374 and 2341 more steps/day (p < 0.0001 both), and a median of 13.6 (p < 0.0001) and 6.8 (p = 0.0024) more minutes/day of MVPA (Figure 4-A). No significant differences were observed between the severe asthma and bronchiectasis population.

MVPA: moderate and vigorous physical activity; SA: severe asthma; BE: bronchiectasis; COPD: chronic obstructive pulmonary disease; Controls: adults with no respiratory disease; SA n=62; BE n=60; COPD n=67; Controls n=63.

4.4.2. Characteristics associated with physical activity in OAD

After adjustment for significant confounders, 6MWD, FEV₁% predicted, dyspnoea, sputum eosinophils% and hs-CRP were all associated with steps/day in the combined OAD group (Table 4-3). Regression models by disease (Table 4-4) show a similar pattern, as indicated by overlapping confidence intervals in forest plots (*S-5; Supplementary information*). The correlations between some measured outcomes and steps/day are shown in Figure 4-B. The 6MWD had the strongest correlation with physical activity, and the regression model explained 43% of the adjusted variance in steps/day. Every 100-metre increase in exercise capacity was associated with an increase of 1500 steps/day. Dyspnoea, airflow limitation, systemic inflammation, and sputum eosinophils were weaker associations of physical activity, but statistically significant, nonetheless. Associations between disease outcomes and MVPA are reported in *S-6; Supplementary information*.

The full regression model shows that better exercise capacity and lung function remained independently and positively associated with physical activity in OAD (Table 4-3). Dyspnoea, hs-CRP and sputum eosinophils were no longer significant. The full model explained 48% of the variance in steps/day in OAD.

Separate models for	Associations of steps/day with disease characteristics in OAD			
clinical and biological outcomes	Coefficient (95%CI)	Significance	Adj. R ²	
a. 6MWD (m)	15.10 (12.10, 18.10)	<0.001	0.433	
b. FEV ₁ % predicted (%)	52.62 (34.99, 70.25)	<0.001	0.153	
<i>Reference: ≤1 scores</i> c. Dyspnoea (≥2 score)	-1689.4 (-2476, -902.1)	0.001	0.204	
d. hs-CRP (mg/L)	-36.96 (-61.35, -12.56)	0.003	0.190	
e. Eosinophils (%)	50.25 (0.40, 100.11)	0.048	0.161	
Full model	Independent associations of step	os/day in OAD	Adj. R²= 0.478	
6MWD (m)	12.40 (8.51, 16.28)	<0.001		
FEV ₁ % predicted (%)	18.96 (0.53, 37.40)	0.044		
Dyspnoea (≥2 score)	-42.40 (-813.95, 729.16)	0.914		
hs-CRP (mg/L)	0.69 (-20.33, 21.71)	0.948		
Eosinophils (%)	25.88 (-14.49, 66.24)	0.207		
BMI (kg/m²) Age	-54.15 (-104.05, -4.26) -27.74 (-55.3 -0.19)	0.034 0.048		

Table 4-3: Associations of physical activity in obstructive airways diseases.

Each model adjusted for confounders: age, gender, and BMI (except FEV₁%predicted). Dyspnoea was transformed into a binary variable and considered positive when scores were ≥ 2 . Confounders (BMI, age and sex) explained a 13% of the variance in steps/day in the full model. Sex not significant in the full model. OAD: obstructive airway diseases; 6MWD: 6-minute walk distance; FEV1% predicted: forced expiratory volume in the first second; hs-CRP: high sensitivity C-reactive protein; BMI: body mass index. Statistically significant results in bold.

	Associations of steps/day with disease outcomes by disease			
	6MWD (m)			
	Coefficient (95%CI)	Significance	Adj. R ²	
Severe asthma	12.76 (6.27, 19.26)	<0.001	0.259	
COPD	12.01 (7.63, 16.39)	<0.001	0.485	
Bronchiectasis	17.37 (12.26, 22.47)	<0.001	0.503	
	FEV ₁ % predicted (%)			
Severe asthma	33.71 (2.04, 65.38)	0.037	0.060	
COPD	46.20 (4.52, 87.88)	0.030	0.055	
Bronchiectasis	45.52 (15.77, 75.27)	<0.01	0.124	
	Dyspnoea (≥2 score) <i>(versus scores ≤1)</i>			
Severe asthma	-1534.53 (-2966.27, -102.80)	0.036	0.129	
COPD	-1310.93 (-2536.58, -85.28)	0.036	0.286	
Bronchiectasis	-2270.94 (-3710.32, -831.56)	0.003	0.213	
	hs-CRP (mg/L)			
Severe asthma	-45.82 (-84.92, -6.72)	0.022	0.153	
COPD	-15.52 (-52.71, 21.67)	0.407	0.243	
Bronchiectasis	-84.34 (-132.33, -36.35)	<0.001	0.279	
	Eosinophils (%)			
Severe asthma	87.87 (16.34, 159.40)	0.017	0.124	
COPD	22.99 (-50.20, 96.18)	0.532	0.239	
Bronchiectasis	-113.40 (-351.35, 124.55)	0.343	0.103	

Table 4-4: Regression models of associations of disease characteristics with steps/day by diagnosis.

Models adjusted for confounders: age, sex, and BMI (except FEV_1 % predicted). Dyspnoea was transformed into a binary variable and considered positive when scores were ≥ 2 . OAD: obstructive airway diseases; 6MWD: 6-minute walk distance; FEV1% predicted: forced expiratory volume in the first second; hs-CRP: high sensitivity C-reactive protein; BMI: body mass index. Statistically significant results in bold.

Figure 4-B: Pearson's correlation of physical activity (steps/day) with 6MWT (A); FEV₁% predicted (B); hs-CRP (C); and Sputum eosinophils% (D).

SA: severe asthma; COPD: chronic obstructive pulmonary disease, BE: bronchiectasis; 6MWD: 6-minute walk distance; FEV_1 : forced expiratory volume in the first second; CRP: high sensitivity C-reactive protein. Hs-CRP and eosinophils % transformed to natural logarithm.

4.5. Discussion

In this study we characterised the level of physical activity in a group of people with severe asthma and bronchiectasis, compared to moderate-severe COPD and controls. For the first time, we have shown that people with both severe asthma and bronchiectasis engage in lower levels of physical activity than people without respiratory disease, but higher levels compared to people with COPD. The intensity and volume of activity were similar in the severe asthma and bronchiectasis groups, and the degree of physical activity impairment in OAD could be explained in an important proportion by exercise capacity and airflow limitation.

We aimed to characterise and compare the level of physical activity impairment in different OAD. A robust body of research exists in COPD, highlighting that physical activity is markedly decreased²⁷¹, and that this decrease is strongly associated with exacerbations and mortality^{264, 271, 272}. As such, the promotion of physical activity in COPD is an important component of disease management³⁸⁰, and a desirable indirect outcome of pulmonary rehabilitation^{89, 380}.

Whilst the degree of physical inactivity and its impact is well established in COPD, in severe asthma and bronchiectasis there is a paucity of research that: characterises this important and modifiable risk-factor, that makes comparisons to disease groups with similar characteristics, or that has described the clinical associations of physical activity in these conditions. This is important in order to generate an evidence-base that can guide the direction of treatment interventions for severe asthma and bronchiectasis. Extrapolating what is known in COPD to these conditions may lead to the design of ineffective interventions. In an era of personalised medicine this new knowledge will help design individualised treatment programmes.

Our severe asthma and bronchiectasis populations moved a median of 5360 steps/day each, resulting in a median difference of 2350 more steps compared to our COPD population. Previous studies conducted in severe asthma²⁹¹ and bronchiectasis²⁸⁴ have reported a median of approximately 6000 steps/day, which is consistent with our results. When compared with severe asthma, our bronchiectasis population also accumulated fewer minutes of MVPA, although not statistically significant. These differences were explained by the fact that our bronchiectasis participants were mostly females, a trend previously reported³³⁷. Overall our data confirm that physical activity impairment exists in severe asthma and bronchiectasis, but to a lesser degree than in COPD.

Whilst we highlight the importance of characterising these behaviours in specific disease groups, we also combined the disease populations to identify if shared clinical characteristics of OAD are associated with physical activity. In the recently proposed 'treatable traits' management approach⁵¹, deconditioning was proposed as an extrapulmonary trait to be addressed. We suggest that physical activity itself is a trait to be targeted, and we report that this occurs albeit to different degrees across diagnosis groups. These groups also shared clinical and biological features that were all associated with physical activity impairment. Therefore, we have identified potential treatment targets that might address the physical inactivity trait, not only in COPD but also in severe asthma and bronchiectasis.

The 6MWD explained the highest proportion of variance in steps/day in the OAD group. This test has been endorsed as a valid outcome measure in people with chronic respiratory disease to measure functional exercise capacity³⁵⁹, and is an important predictor of COPD mortality^{370, 385}. Despite being widely used in COPD and increasingly validated in bronchiectasis²⁸⁶, it is not routinely recommended in severe asthma³³, and thus, assessment of functional exercise capacity in severe asthma is scarce⁸³. The reasons for its underuse may

relate to fear of provoking exercise-induced bronchoconstriction, or that "uncontrolled asthma" is listed as one of the guideline contraindications³⁵⁹. We did not encounter any adverse-events performing the test in our severe asthma population.

FEV₁% predicted was also independently associated with the level of physical activity in the OAD group. Considering that the degree of airflow limitation categorises disease severity, and that increased severity has been associated with lower activity levels^{269, 284, 381}, these results are somewhat expected. Interesting though, in the full model airflow limitation was a stronger predictor of steps/day than dyspnoea, despite the latter being one of the most disabling symptoms in diseases such as COPD and severe asthma.

Activity-related dyspnoea was common in our OAD population. We found that higher dyspnoea scores (\geq 2) modestly explained the adjusted variance in physical activity in the individual model, but it did not remain significant in the full model. It could be that breathlessness alone is not enough to explain the physical activity impairment found in these diseases, and that the evaluation of symptoms in different domains could give a more accurate picture. This is in line with recommendations made in COPD guidelines².

In our full multivariate model, the inflammatory markers of hs-CRP and sputum eosinophils were not independently associated with physical activity, despite displaying a moderate to weak associations individually. This is probably related to the strong association found with the 6MWD, which by itself accounted for most of the variance in physical activity. Despite this, systemic inflammation was still significantly associated with steps/day in the OAD group, which is in line with evidence in COPD²⁷¹ and in severe asthma²⁹³.

Exercise capacity was a better predictor of physical activity than airflow limitation. This may be due to the fact that functional exercise capacity gives an estimate of the person's ability to endure exercise³⁸⁰, which is a subset of physical activity¹⁵⁵. In COPD, the mechanisms behind exercise limitation are multifactorial, and include the impairment of the ventilatory, cardiovascular, metabolic and locomotor muscle systems³⁸⁶. It is likely that these mechanisms also play a role in severe asthma and bronchiectasis, especially in patients showing a degree of overlap between these conditions.

Lastly, in the general population, physical activity has been positively associated with the prevention of different chronic diseases^{160, 176}. Considering the comorbidity burden found in OAD populations, the promotion of physical activity may generate benefits beyond respiratory symptoms alone.

Our study has some limitations. Its cross-sectional design does not infer causality of our findings. Additionally, we have not considered important comorbidities, disease characteristics, sociodemographic and environmental characteristics nor behaviours (i.e. sedentary time) that may impact in the engagement of physical activity or interact with diseases' outcomes. Lastly, our populations are not demographically nor clinically matched, which limit comparison of our findings. Nevertheless, diagnosis was not a significant interaction in the relationship between the independent variables and steps/day.

4.6. Conclusion

Physical activity impairment is a shared behavioural characteristic of people with COPD, severe asthma and bronchiectasis. Shared clinical characteristics, such as exercise capacity and airflow limitation explain an important proportion of this impairment in OAD. Both of these traits can be targeted by specific treatments, making physical activity impairment a "treatable trait" that requires consideration in the management of these diseases. Treatment studies aimed at improving physical activity in these populations are needed and our data may inform such interventions.

4.7. Supplementary information

S-1: Inclusion and exclusion criteria

All participants were adults (≥18 years), and able to provide written consent.

Participants with severe asthma, COPD and bronchiectasis were recruited from the respiratory ambulatory care clinics at John Hunter Hospital (Newcastle, Australia), the clinical research databases of the Priority Research Centre for Healthy Lungs at the University of Newcastle and the Hunter Medical Research Institute (Newcastle, Australia). Participants without respiratory disease were recruited from the clinical research databases of the Priority Research Centre for Healthy Lungs and the Hunter Medical Research Institute and community advertisement. Data from severe asthma, healthy controls and bronchiectasis participants were extracted from two cross-sectional studies aimed at characterising these populations (ethics approval: 08/08/20/3.10). Healthy control participants were matched by age and sex with severe asthma participants, and data from part of these cohorts have been previously published by the authors¹. Data from COPD participants were extracted from the baseline assessment of a randomised control trial (ACTRN 12613000046707, ethics approval 12/12/12/3.06).

Participants with a respiratory physician diagnosis of severe asthma according to American Thoracic Society/European Respiratory Society Severe Asthma Task Force² were included if they had: evidence of airway hyper-responsiveness *or* variable airflow limitation, *and* were on high dose inhaled corticosteroid (\geq 1000 mcg of Fluticasone or equivalent) *and* long acting beta-agonist *or* maintenance prednisone, *and* had a post-bronchodilator forced expiratory volume in the first second (FEV₁) < 80% *or* FEV₁/forced vital capacity (FVC) <70% *or* an asthma control questionnaire score \geq 1.5 *or* had a severe exacerbation in the last 12-months with oral corticosteroid use. Exclusion criteria included: current lung cancer or other blood, lymphatic or solid organ malignancy, and poor survival (<3 months), and prolongation of the QTc interval >480.

Participants with bronchiectasis were included if they had a primary diagnosis of bronchiectasis confirmed by HRCT of chest. Exclusion criteria included diagnosis with respiratory diseases other than asthma or COPD.

Participants with a confirmed diagnosed of COPD according to current guidelines³ were included if they had: a post-bronchodilator FEV₁% predicted < 80%, and FEV₁/FVC < 70% or objective confirmation from computed tomography of chest, and an acute exacerbation within the previous 12-months and were in Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage \geq 2, and receiving baseline therapy in accordance to GOLD strategy recommendations. Exclusion criteria included: current smoker, treatment with Macrolides, Tetracycline and oral corticosteroids, and hypersensitive to Macrolides, pregnancy or breastfeeding, impaired liver function, prolongation of the QTc interval (<480 mS), uncontrolled medical illness that would preclude participation in the study, and primary diagnosis of other significant respiratory disease. Controls participants were non-smokers with no objective evidence of respiratory disease.

Exclusions criteria for all groups also included: inability to attend study visits, and recent (past 4-weeks) exacerbation or respiratory tract infection.

S-2: Adjusted simple linear regression models testing interaction effects between diagnosis and each independent variable on steps/day.

	Coefficient (95% CI)	<i>p</i> -value
6MWD* COPD (vs. severe asthma)	2.61 (-4.74, 9.98)	0.483
6MWD* bronchiectasis (vs. severe asthma)	6.47 (-0.98, 13.92)	0.088
FEV ₁ % predicted* COPD (vs. severe asthma)	12.48 (-39.17, 64.15)	0.633
FEV ₁ % predicted* bronchiectasis (vs. severe asthma)	11.80 (-31.20, 54.82)	0.588
Dyspnoea $\geq 2(vs. scores \leq 1)^*$ COPD (vs. severe	-91.60 (-1937, 1754)	0.922
asthma)		
Dyspnoea ≥2(vs. scores ≤1)* bronchiectasis (vs.	-1002.22	0.309
severe asthma)	(-2946.91, 942.46)	
hs-CRP* COPD (vs. severe asthma)	21.22 (-35.41, 77.86)	0.460
hs-CRP* bronchiectasis (vs. severe asthma)	-35.20 (-96.52, 26.10)	0.258
%eosinophils in sputum* COPD (vs. severe asthma)	-69.78 (-175.59, 36.02)	0.194
%eosinophils in sputum* bronchiectasis (vs. severe	-222.87	0.072
asthma)	(-466.19, 20.44)	

Interaction of diagnosis in the relationship between steps/day and independent variables

Coefficients for the interaction between diagnosis label and independent variables on steps/day (dependent variables), tested in adjusted simple linear regression models adjusted for age, sex, BMI and diagnosis (severe asthma, COPD and bronchiectasis.). FEV₁% predicted adjusted only for diagnosis. 6-minute walk distance; FEV₁% predicted: forced expiratory volume in the first second; hs-CRP: high sensitivity C-reactive protein; BMI: body mass index.

S-3: Associations between the levels of physical activity and exacerbations

We assessed the relationship between exacerbations (number of severe exacerbations and frequent exacerbator) as a predictor of the level of physical activity (dependent variable: steps/day and MVPA) in linear regression models.

Severe exacerbations in severe asthma and COPD were defined according to guidelines:

• Severe asthma (including severe and serious exacerbations): at least one hospitalisation, Intensive Care Unit stay or mechanical ventilation, or two or more bursts of systemic corticosteroids (>3 days each) in the previous year.

• COPD: patients requiring hospitalisation or visit to emergency rooms.

Since a definition for severe exacerbation in bronchiectasis has not yet been agreed³⁸⁷, for the purpose of this analysis we defined severe exacerbations in bronchiectasis as per COPD criteria.

"Frequent exacerbator" was defined as having a severe exacerbation or ≥ 2 moderate exacerbations in the last year.

The total number of severe exacerbations in the severe asthma, COPD and bronchiectasis group were 190, 44 and 18 exacerbations, respectively. The proportion of frequent exacerbator in the severe asthma, COPD and bronchiectasis group were 93.4%, 80.6% and 58.3%, respectively. Table S-4 reports in the association of the simple linear regression models using steps/day for both exacerbations' outcomes.

	Associations of Steps/day with number of severe exacerbations			
	Coefficient (95%CI)	p-value		
Severe asthma	-235.1 (-458.9, -11.3)	0.040		
COPD	-15.8 (-756.8, 725.2)	0.966		
Bronchiectasis	-1269.5 (-2277.1, -261.9)	0.014		
	Associations of MVPA with number of severe exacerbations			
Severe asthma	-1.7 (-3.6, 0.2))	0.075		
COPD	-1.0 (-6.2, 4.2)	0.697		
Bronchiectasis	-6.5 (-13.1, 0.2)	0.056		
	Associations of Steps/day and frequent exacerbator			
Severe asthma	-116 (-2915, 2683)	0.934		
COPD	584 (-1139, 2308)	0.501		
Bronchiectasis	-142.6 (-1628, 1343)	0.848		
	Associations of MVPA and frequent exacerbator			
Severe asthma	6.5 (-16.5, 29.6)	0.573		
COPD	5.2 (-6.9, 17.3)	0.394		
Bronchiectasis	-3.2 (-12.8, 6.4)	0.508		

S-4: Associations between physical activity and exacerbations.

S-5: Forest plots of associations of clinical and biological outcomes with steps/day by disease.

Coefficients (95% CI) of clinical outcomes as predictors of steps/day in linear regression models by disease, adjusted by age, sex, and BMI (except FEV1% predicted). 6MWD: 6-minute walked distance, FEV1% predicted: forced expiratory volume in the first second, hs-CRP: high sensitivity C-reactive protein; eosinophils: percentage of eosinophils in sputum.

S-6: Clinical and biological characteristics associated with moderate and vigorous physical activity in the OAD group.

Separate models for clinical and biological	Associations of MVPA with disease characteristics in OAD of MVPA in OAD			
outcomes	Coefficient (95%CI)	Significance	Adj. R2	
6MWD (m)	0.10 (0.07, 0.12)	<0.0001	0.3442	
FEV ₁ % predicted (%)	0.34 (0.21, 0.47)	<0.001	0.1220	
Dyspnoea (≥2 score)	-13.51 (-19.19, -7.82)	<0.001	0.1878	
hs-CRP (mg/L)	-0.20 (-0.38, -0.02)	<0.032	0.1231	
Eosinophils (%)	0.25 (-0.13, 0.62)	0.193	0.1201	
Full model	Independent associations of	f MVPA in OAD	Adj. R2 = 0.3923	
6MWD (m)	0.08 (0.04, 0.11)	<0.001		
FEV ₁ % predicted (%)	0.18 (0.03, 0.32)	0.019		
Dyspnoea (≥2 score)	-2.91 (-8.98, 3.16)	0.346		
hs-CRP (mg/L)	0.05 (-0.11, 0.22)	0.525		
Eosinophils (%)	0.09 (-0.23, 0.41)	0.580		
BMI (kg/m²)	-0.05 (-0.44, 0.34)	0.808		
Female	-8.26 (-13.88, -2.64)	0.004		

Each model (except FEV₁% predicted) adjusted for confounders: age, gender, and BMI. Dyspnoea was transformed into a binary variable and considered positive when scores were ≥ 2 . Confounders (BMI, age and sex) explained a 9.7% of the variance in MVPA. Age not significant in the full model. MVPA is activity at \geq 1942 count per minutes as measured by Actigraph wGT3X-BT accelerometer. OAD: obstructive airway diseases; 6MWD: 6-minute walk distance; FEV1% predicted: forced expiratory volume in the first second; hs-CRP: high sensitivity C-reactive protein; BMI: body mass index. MVPA: moderate and vigorous physical activity. Statistically significant results in bold.

In this chapter, I have addressed important common pulmonary characteristics shared by people with OAD and highlighted that physical activity could be considered as an extrapulmonary treatable trait not only in COPD, but also in severe asthma and bronchiectasis. However, data characterising the interrelationship between physical activity, other extrapulmonary features including comorbidities, and health-related quality of life is limited. Health related quality of life is an important multidimensional and patient-related end-point that help to inform clinicians about the perceived impact that the disease has in a patient.

In order to address this gap in the literature, in Chapter 5 I characterise the different relationships between physical activity and others extrapulmonary features and comorbidities with health-related quality of life in participants with severe asthma and bronchiectasis.

5. Chapter 5: Extrapulmonary Associations of Health Status in Severe Asthma and Bronchiectasis: comorbidities and functional outcomes.

This chapter is currently under peer-review in the journal Respiratory Medicine. Resubmission has been invited

Citation: Cordova-Rivera L, Gibson PG, Gardiner PA, Hiles SA, McDonald VM. **Extrapulmonary** disease characteristics and health-status in severe asthma and bronchiectasis. *Under peer review*.

Overview of this Chapter

In the previous chapter, I characterised the degree of physical inactivity in severe asthma, bronchiectasis, and moderate to severe COPD. In addition to concluding that the levels of physical activity were lower in OAD compared to controls, and that the degree of reduction in severe asthma and bronchiectasis was similar; I demonstrated that despite these differences this behaviour was still significantly associated with important pulmonary outcomes. People with severe asthma and bronchiectasis, including higher presence of comorbidities and anxiety and depression symptoms. Other extrapulmonary characteristics, such as skeletal muscle strength, have not been very well characterised in severe asthma or bronchiectasis. As a result, the impact of these characteristics is unclear. This contrasts again with knowledge in COPD, where several of these extrapulmonary disease characteristics are recognised treatment targets for improving health-related quality of life (HRQoL).

In this chapter, I aimed to explore the interrelationship between several extrapulmonary outcomes, including physical activity, comorbidities, skeletal muscle function, among others with health-related quality of life in an obstructive airway disease population composed of participants with severe asthma and bronchiectasis.

I hypothesised that better extrapulmonary characteristics, such as higher physical activity, fewer comorbidities, and better skeletal muscle function, will be associated with improved health-related quality of life in participants with severe asthma and bronchiectasis. With these data, I aim to generate knowledge that could guide future interventions that aim to improve quality of life in severe asthma and bronchiectasis.

5.1. Abstract

Background: Severe asthma and bronchiectasis are heterogeneous diseases that contribute to disability beyond the pulmonary system. The magnitude of the impact that these extrapulmonary features has on health-related quality of life (HRQoL) is unknown.

Methods: We analysed the cross-sectional relationships between HRQoL (St. George's Respiratory Questionnaire; SGRQ) and extrapulmonary characteristics, including physical activity (steps/day), anxiety and depression, isometric leg strength, systemic inflammation, and several comorbidities in adults with severe asthma (n=70) and bronchiectasis (n=61).

Results: Participants with severe asthma and bronchiectasis had similar SGRQ total scores (mean scores 43.7 and 37.8 for severe asthma and bronchiectasis; p>0.05), and similar pulmonary and extrapulmonary characteristics. The associations between extrapulmonary variables and HRQoL did not differ according to diagnosis (all interactions p>0.05). Greater anxiety and depressive symptoms, fewer steps/day and greater systemic inflammation were statistically associated with poorer HRQoL in both diseases (p<0.05). Lower isometric leg strength in severe asthma, and greater Charlson Comorbidity Index in bronchiectasis were also associated with poorer HRQoL (p<0.05). In the multivariable regression model performed in the combined disease groups, anxiety and depression, steps/day, systemic inflammation and isometric leg strength remained independently associated with HRQoL. Associations between extrapulmonary characteristics and SGRQ domains were stronger for the activity and impact domains, than symptoms.

Conclusion: In severe asthma and bronchiectasis, extrapulmonary features including physical activity and leg strength have a significant impact on HRQoL, especially within the activity and impact domains. These features should be considered as part of the assessment of these conditions, and they may represent additional treatment targets to improve HRQoL.

5.2. Introduction

Severe asthma and bronchiectasis contribute a high burden of illness. Severe asthma affects 3-10% of the asthma population³³, but discordantly is responsible for over 50% of the asthma-related healthcare costs³⁵¹. Additionally, mortality from asthma has not improved over recent years, and it is rising in Australia, the UK and USA¹². Bronchiectasis is less prevalent, nevertheless its incidence is also rising in Europe and the USA³⁸⁸. Moreover, individuals with bronchiectasis suffer high morbidity secondary to recurrent chest infections³⁸⁹.

The ongoing disease burden from obstructive airway diseases such as asthma, bronchiectasis and chronic obstructive pulmonary disease (COPD), has led to calls for a different approach to disease management that more effectively addresses the complexity and heterogeneity of these diseases^{12, 51, 125}. The proposed treatable traits strategy, for instance, recognises that patients have specific disease components (called 'traits') that can be identified and treated (hence 'treatable traits') and this will lead to improved patient outcomes⁵¹. While most pharmacological therapies target the airway domain in severe asthma, bronchiectasis and COPD, it is recognised that traits outside the airway may also be important. The impact of a trait on quality of life is a useful determinant of clinically important traits, and therefore, it is necessary to test whether these extrapulmonary characteristics represent important traits that could be addressed.

Although severe asthma and bronchiectasis have different aetiologies and pathogenesis, they share similar pulmonary and extrapulmonary characteristics that together impair health-related quality of life (HRQoL)^{14, 15}, making this outcome an ongoing burden for these patients^{14, 390, 391}. HRQoL is an important multidimensional and patient-related outcome that focuses on the physical, mental, emotional, and social impact that the disease has on patient's wellbeing³⁹². In COPD, extrapulmonary features including physical inactivity, skeletal muscle dysfunction, and comorbidities are known to negatively impact HRQoL,^{102, 128, 271} and represent important targets for treatment.³⁹²

We have recently shown that the deficits in exercise capacity and airflow limitation between severe asthma and bronchiectasis patients are similar, and that these pulmonary characteristics are associated with impairment in physical activity³⁹³ (see <u>Chapter 4</u>). However, it remains unclear how extrapulmonary characteristics, such as physical activity, muscle strength, and comorbidities are associated with HRQoL in patients with severe asthma and bronchiectasis, and whether there is an interrelationship between other extrapulmonary characteristics and health-status. This is important because if extrapulmonary features do impact HRQoL, then they may present useful treatment targets in these diseases, which require specific and individualised interventions in order to optimise HRQoL¹⁴.

In this study, we aimed to describe relationships between HRQoL and extrapulmonary characteristics, including physical activity, muscle strength, comorbidities, systemic inflammation and anxiety and depression with HRQoL in participants with severe asthma and bronchiectasis. Secondarily, we tested whether the relationship between extrapulmonary characteristics and HRQoL differed for severe asthma and bronchiectasis, by testing the interaction between diagnosis and extrapulmonary characteristics in our analyses.

We hypothesised that extrapulmonary traits will have similar impacts in severe asthma and bronchiectasis, and that better function in these variables will be significantly and independently associated with a lesser degree of impairment in HRQoL.

5.3. Methods

Adults (≥18 years) with respiratory physician-diagnosed severe asthma or bronchiectasis were recruited from the respiratory clinics at John Hunter Hospital and the clinical research databases of the Priority Research Centre for Healthy Lungs (Newcastle, Australia) between March 2014 and June 2017. Data from severe asthma and bronchiectasis participants were extracted from two cross-sectional studies aimed at characterising these populations. Participants were required to be without exacerbation within the 4-weeks prior the study-visits.

Ethics approval was granted from the Human Research Ethics Committees of the Hunter New England Local Health District (08/08/20/3.10) and the University of Newcastle. The study was conducted according to Good Clinical Practice Guidelines and all participants provided written informed consent.

Participants with a respiratory physician diagnosis of severe asthma according to American Thoracic Society/European Respiratory Society Severe Asthma Task Force³³ were included if they had:

1. Evidence of airway hyper-responsiveness or variable airflow limitation, and

2. Were on high dose inhaled corticosteroid (≥1000 mcg of Fluticasone or equivalent) and long acting beta-agonist *or* maintenance prednisone, *and*

3. Had a post-bronchodilator forced expiratory volume in the first second (FEV₁) < 80% or FEV₁/forced vital capacity (FVC) <70% or an asthma control questionnaire score \geq 1.5 or had a severe exacerbation in the last 12-months with oral corticosteroid (OCS) use.

Participants with bronchiectasis¹³¹ were included if they had a primary diagnosis of bronchiectasis confirmed by high resolution chest computed tomography. Exclusion criteria included diagnosis with respiratory diseases other than asthma or COPD.

Exclusions criteria for both groups also included: inability to attend study visits, and recent (past 4-weeks) exacerbation or respiratory tract infection.

Ethics approval was granted from the Human Research Ethics Committees of the Hunter New England Local Health District (08/08/20/3.10) and the University of Newcastle. The study was conducted according to Good Clinical Practice Guidelines and all participants provided written informed consent.

5.3.1. Procedures

Participants attended two visits and underwent a multidimensional assessment¹²⁵ involving measures of airflow limitation, exercise capacity, height, weight, and smoking status. Further assessments included:

5.3.1.1. Health-related quality of life

Total and domain score of the Saint George Respiratory Questionnaire (SGRQ)³⁹⁴ were calculated. Higher scores represent higher impairment. The minimal clinically important difference (MCID) is \geq 4 units³⁹⁵.

5.3.1.2. Physical activity

Steps/day were measured using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, Florida). Participants wore the monitor 24-hours a day for 14-consecutive days on their dominant hip. The device was initialised using the ActiLife 6.11.6 Data Analysis Software. Data from valid days (\geq 4 days with \geq 10 hours of recording each) were averaged as daily mean steps/day.

5.3.1.3. Isometric leg strength

The better of two attempts was recorded to the nearest 0.1 kg resistance using a platformleg and back dynamometer (Baseline[®], USA). Participants attempted to smoothly extend their knees as forcefully as possible.

5.3.1.4. Body composition and bone mineral density

Body mass index (BMI) was calculated as weight divided by height squared (kg/m²). Dualenergy X-ray absorptiometry (DXA) GE Lunar Prodigy Pro DEXA scanner (GE Healthcare, Giles HP8-4SP, UK) was used to measure skeletal muscle-mass and bone mineral density. Appendicular skeletal muscle-mass index was calculated from the lean soft tissue in upper and lower limbs divided by height squared. Scores \leq 7.26 (males) and \leq 5.45 (females) Kg/m² were indicative of sarcopenia³⁹⁶. Osteopenia and osteoporosis in the non-dominant hip were defined by a T-score between -1.0 and -2.5, and \leq -2.5, respectively³⁹⁷.

5.3.1.5. Comorbidities and systemic inflammation

Anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). A score in either domain ≥8 indicates possible anxiety or depression³⁵⁸. Comorbidity-related prognosis was calculated using the age-adjusted Charlson Comorbidity Index (CCI), from the medical history. Systemic inflammation was measured using peripheral blood high-sensitivity C-reactive protein (hs-CRP), and analysed using enzyme-linked immunosorbent assay (Siemens Healthcare Diagnostics, Marburg, Germany).

5.3.2. Statistical analysis

Data were analysed using STATA 13 (Stata Corp., College Station, TX, USA). Since the distribution of hs-CRP was skewed, we performed natural log-transformation (In) for this variable to ensure assumptions of regression analyses were met. Descriptive statistics were

calculated. Missing values of the variables leg strength (n=21), bone density (n=8), steps/day (n=9) and sarcopenia (n=4) were estimated using multiple imputation by chained equations. Categorical values were imputed via augmented logistic or multinomial logistic regression and continuous variables were imputed via predictive mean matching. Variables used in the imputation model (sarcopenia, bone density, leg and arm strength, ln(hs-CRP), CCI score, total fat mass, HADS score, dyspnoea score, BMI, age, gender, SGRQ total, FEV₁, steps/day, moderate and above physical activity, and 6-minute walk distance) were selected based on significant associations with the missing variables or because they were either independent or dependent variables in our full regression model assessing determinants of HRQoL. Burn-in and iteration were 100, and 30 datasets were created. Convergence plots indicated good model fit. No statistically significant differences were observed in the Student's t-test for the SGRQ scores between participants with missing and non-missing values for imputed variables (*p*>0.05).

Associations with HRQoL [Dependent variable: SGRQ total score; independent variables: steps/day, isometric leg strength, sarcopenia, osteopenia or osteoporosis, ln(hs-CRP), HADS total score, and CCI score] were examined using linear regression by disease groups (Models A). Age, sex and BMI were included in each analysis as biological confounders. Further adjusted regression models tested interaction effects between each independent variable and diagnosis on the outcome HRQoL (*Table S-1 - Supplementary Information*). As diagnosis was not a statistically significant effect modifier of these relationships, the disease groups were combined to increase statistical power for multivariable regression analyses.

Independent variables with a p < 0.2 and confounders were included into a multivariable linear regression analysis to identify independent determinants of HRQoL total score (Model-B). This analysis was repeated by SGRQ domain scores. To produce a better visual representation of dose-response relationship, steps/day, ln(hs-CRP), HADS, and isometric leg strength were transformed into tertiles (CCI into median split), and tested in age-, sex- and BMI-adjusted simple (Models C-1) and fully-adjusted multivariable (Model C-2) regression models against SGRQ. Using models C-1, predicted values of SGRQ were calculated for each tertile (or dichotomous value). A p < 0.05 was considered statistically significant.

5.4. Results

A total of 131 (SA=70, bronchiectasis=61) participants were included in the analysis. Compared to bronchiectasis participants, the severe asthma group were younger, included more males, had higher BMI, and longer disease duration (Table 5-1). Respiratory characteristics were not significantly different between groups. In bronchiectasis, more participants had reduced bone density and sarcopenia, and isometric leg strength was, on average, lower. Nevertheless, in adjusted linear regression analyses diagnosis was not a significant effect modifier for any of the independent variables (*Table S-1 - Supplementary Information*), hence we also present an analysis of severe asthma and bronchiectasis combined.
	Severe asthma n = 70	Bronchiectasis n = 61	p	Groups Combined n = 131
Age (years), median [IQR]	55 [42 - 68]	68 [62 - 73]	<0.001	63.5 [51 -70]
Female, %	54.3	86.9	<0.001	68.9
BMI (kg/m ²), mean ± SD	30.4 ± 7.7	25.6 ± 5.0	<0.001	28.7± 7.0
Years since diagnosis, median	33.3	16.0	0.057	23.0
[IQR]	[15.4 – 51.0]	[5.0 - 56.5]		[10.1 – 52.0]
Current smoker, %	7.1	1.7	0.133	4.1
Packs/year, median [IQR]	0 [0 - 5.4]	0 [0 - 3.5]	0.483	0 [0 – 5.0]
Clinical characteristics				
Post FEV ₁ (% predicted), mean ± SD	75.8 ± 21.2	76.6 ± 23.0	0.847	76.2 ± 22.0
Post FVC (% predicted), mean	86.4 ± 16.7	80.9 ± 18.6	0.078	83.8 ± 17.7
L SD Post FER mean + SD	0.68 + 0.1	071+01	0 1/0	0 70 + 0 1
6MW/D (m) mean + SD	0.00 ± 0.1	0.71 ± 0.1	0.149	0.70 ± 0.1
6MWD (% predicted)	71 7	76 5	0.370	73.2
median [IOR]	[6/ 1 - 80 8]	[62 9 - 82 0]	0.452	[63 9 - 81 6]
SGRO (total score)	13 7 + 20 0	37 8 + 17 0	0.070	10 0 + 10 0
mean ± SD	43.7 ± 20.0	57.8 ± 17.0	0.070	40.9 ± 19.9
Extrapulmonary characteristics				
Steps/day, median [IQR]	5385	5350	0.825	5385
	[3941-7844]	[3522-7834]		[3807-7844]
CCI (score), median [IQR]	0 [0-1]	0 [0-3]	0.226	0 [0-2]
Osteopenia Osteoporosis, %	20.6 3.2	51.7 6.7	0.001	35.8 4.9
HADS (total score),	11 [7-14]	8 [5-13]	0.028	9.0 [6 - 14.0]
median [IQR]				
Sarcopenia, %	11.8	27.1	0.028	18.9
Leg strength(kg),	83	57	0.001	61.5
median [IQR]	[55 - 123]	[43 – 70]		[49.0 - 111.0]
Hs-CRP (mg/L), median [IQR]	2.0 [1.1-6.6]	2.8 [1.4 - 7]	0.305	2.5 [1.3 - 7.0]

Table 5-1: Baseline Participants Characteristics.

Description of tertiles	1 st tertile	2 nd tertile	3 rd tertile
Steps/day	1631-4125	4204-7015	7048-15379
hs-CRP, mg/L	0.2-1.5	1.6-4.9	5-125.7
HADS, score	0-7	8-12	13-29
Leg strength, kg	10-54	55-95	100-190
	Below median	Above median	
CCI, score	0-0	1-7	

BMI: body mass index; FEV₁: forced expiratory volume in the first second; FVC: forced vita capacity; FER: forced expiratory ratio; 6MWD: 6-minute walked distance; SGRQ: Saint George Respiratory Questionnaire; CCI: Charlson Comorbidity Index; HADS: Hospital Anxiety and Depression Scale; hs-CRP: high-sensitivity C-reactive protein. Descriptive statistics are from non-imputed data. Statistically significant results in bold captions. Description of tertiles: Results expressed as range. CCI transformed into median split.

5.4.1. Associations of HRQoL in Severe Asthma and Bronchiectasis

In simple linear regression models adjusted for age, sex and BMI (Table 5-2), the variables steps/day, (In)hs-CRP and HADS were each statistically significantly associated with HRQoL in both disease populations. In severe asthma, a significant association was also found between leg strength and SGRQ, and in bronchiectasis between CCI and SGRQ. Despite the lack of statistically significant results for CCI in severe asthma, leg strength in bronchiectasis, and sarcopenia in both diseases, the direction of the coefficients suggested that better values in these parameters were associated with better HRQoL.

In the multivariable linear regression model including both disease populations combined, steps/day, HADS, In(hs-CRP), and leg strength were independently associated with HRQoL. The model explained 43.9% of the variance in the SGRQ scores (Table 5-3).

Table 5-2: Adjusted simple linear regression models (models A) of each extrapulmonary characteristic, adjusted for age, sex and BMI, as a determinant of SGRQ in severe asthma and bronchiectasis.

Extrapulmonary determinants of SGRQ: severe asthma models						
Extrapulmonary variable	Coefficient (95% CI)	<i>p</i> -value	Adj. R ²			
Physical activity (steps/day)	-0.003 (-0.005, -0.001)	0.003	0.152			
Comorbidities (CCI, score)	2.177 (-1.008, 5.362)	0.177	0.045			
Systemic inflammation [Ln(hs-CRP)]	7.912 (3.093, 12.730)	0.002	0.158			
Depression and anxiety (HADS, score)	1.284 (0.566, 2.002)	0.001	0.180			
<i>Reference: no sarcopenia</i> Sarcopenia	11.219 (-4.567, 27.004)	0.160	0.048			
Isometric leg strength (kg)	-0.210 (-0.343, -0.077)	0.002	0.162			
<i>Reference: normal bone density</i> Osteopenia	4.148 (-8.371, 16.667)	0.510	0.026			
Osteoporosis	12.781 (-15.51, 41.079)	0.368				
Extrapulmonary determin	Extrapulmonary determinants of SGRQ: bronchiectasis models					
Extrapulmonary variable	Coefficient (95% CI)	<i>p</i> -value	Adj. R ²			
Extrapulmonary variable Physical activity (steps/day)	Coefficient (95% Cl) -0.003 (-0.004, -0.001)	<i>p</i> -value 0.001	Adj. R² 0.242			
Extrapulmonary variable Physical activity (steps/day) Comorbidities (CCI, score)	Coefficient (95% Cl) -0.003 (-0.004, -0.001) 3.086 (0.944, 5.228)	<i>p</i> -value 0.001 0.006	Adj. R ² 0.242 0.179			
Extrapulmonary variablePhysical activity (steps/day)Comorbidities (CCI, score)Systemic inflammation [Ln(hs-CRP)]	Coefficient (95% Cl) -0.003 (-0.004, -0.001) 3.086 (0.944, 5.228) 5.975 (2.982, 8.968)	<i>p</i> -value 0.001 0.006 <0.001	Adj. R ² 0.242 0.179 0.273			
Extrapulmonary variablePhysical activity (steps/day)Comorbidities (CCI, score)Systemic inflammation [Ln(hs-CRP)]Depression and anxiety (HADS, score)	Coefficient (95% Cl) -0.003 (-0.004, -0.001) 3.086 (0.944, 5.228) 5.975 (2.982, 8.968) 1.521 (0.953, 2.088)	p-value 0.001 0.006 <0.001	Adj. R ² 0.242 0.179 0.273 0.383			
Extrapulmonary variablePhysical activity (steps/day)Comorbidities (CCI, score)Systemic inflammation [Ln(hs-CRP)]Depression and anxiety (HADS, score)Reference: no sarcopeniaSarcopenia	Coefficient (95% Cl) -0.003 (-0.004, -0.001) 3.086 (0.944, 5.228) 5.975 (2.982, 8.968) 1.521 (0.953, 2.088) 9.915 (-0.038, 19.870)	<i>p</i> -value 0.001 0.006 <0.001	Adj. R ² 0.242 0.179 0.273 0.383 0.129			
Extrapulmonary variablePhysical activity (steps/day)Comorbidities (CCI, score)Systemic inflammation [Ln(hs-CRP)]Depression and anxiety (HADS, score)Reference: no sarcopenia SarcopeniaIsometric leg strength (kg)	Coefficient (95% Cl) -0.003 (-0.004, -0.001) 3.086 (0.944, 5.228) 5.975 (2.982, 8.968) 1.521 (0.953, 2.088) 9.915 (-0.038, 19.870) -0.015 (-0.221, 0.191)	<i>p</i> -value 0.001 0.006 <0.001	Adj. R ² 0.242 0.179 0.273 0.383 0.129 0.071			

Models A: Each extrapulmonary variable model is adjusted for age, sex and BMI. CCI adjusted for sex and BMI. Confounders explained 3.36% and 8.1% of variance in the SGRQ for severe asthma and bronchiectasis, respectively. SGRQ: St George's Respiratory Questionnaire, Ln(hs-CRP): natural logarithm of high sensitivity C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson Comorbidity Index. Statistically significant results in bold font. Table 5-3: Multivariable regression model of extrapulmonary determinants of SGRQ in the combined disease populations (model B, all characteristics and confounders in single regression model).

Extrapulmonary associations of SGRQ in severe asthma and bronchiectasis.				
Model adj. R ² = 0.439				
	Coefficient (95% CI)	<i>p</i> -value		
Physical activity (steps/day)	-0.002 (-0.003, -0.001)	0.008		
Comorbidities (CCI, score)	1.596 (-0.102, 3.294)	0.065		
Systemic inflammation [Ln(hs-CRP)]	3.118 (0.728, 5.508)	0.011		
Depression and anxiety (HADS, score)	1.171 (0.764, 1.579)	<0.001		
<i>Reference: no sarcopenia</i> Sarcopenia	-0.470 (-8.102, 7.162)	0.903		
Isometric leg strength (kg)	-0.097(-0.185, -0.009)	0.031		
Reference: normal bone density				
Osteopenia	0.488 (-5.715, 6.691)	0.876		
Osteoporosis	-5.646 (-18.079, 6.786)	0.370		
Age, years	-0.206 (-0.412, 0.001)	0.051		
Reference: male				
Female	-4.181 (-11.749, 3.387)	0.276		
BMI, kg/m ²	0.272 (-0.197, 0.742)	0.253		

Models B: SGRQ: St George Respiratory Questionnaire, Ln(hs-CRP): natural logarithm of high sensitivity C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson comorbidity Index, Sarcopenia= presence of sarcopenia; Osteopenia and Osteoporosis: presence of the condition. Age, sex and BMI explained the 6.7% variance in the SGRQ.

In the analysis peformed by SGRQ domain, the extrapulmonary variables were most substantially associated with the activity domain, followed by impacts. HADS was the only variable displaying a significant association with symptoms (Table 5-4)

Extrapulmonary determinants of SGRQ in the combined population of disease groups						
	Symptoms (Adj. R ² = 0.146)		Activity (Adj. R ² = 0.453)		Impact (Adj. R²= 0.355)	
	Coefficient (95% CI)	<i>p</i> -value	Coefficient (95% CI)	<i>p</i> -value	Coefficient (95% CI)	<i>p</i> -value
Physical activity (steps/day)	-0.001 (-0.003, 0.001)	0.181	-0.002 (-0.004, -0.001)	0.005	-0.001 (-0.002, -0.000)	0.030
Comorbidities (CCI, score)	0.172 (-2.396, 2.739)	0.895	2.886 (0.491, 5.281)	0.019	1.457 (-0.249, 3.163)	0.094
Systemic inflammation [Ln(hs-CRP)]	2.14104 (-1.454, 5.736)	0.241	3.324 (-0.046, 6.694)	0.053	3.3676 (0.969, 5.766)	0.006
Depression and anxiety (HADS, score)	0.9646 (0.351, 1.578)	0.002	1.422 (0.848, 1.997)	<0.001	1.082 (0.673, 1.491)	<0.001
<i>Reference: no sarcopenia</i> Sarcopenia	7.690 (-3.768, 19.148)	0.186	-1.016 (-11.788, 9.756)	0.852	-2.800 (-10.438, 4.838)	0.469
Isometric leg strength (kg)	-0.080 (-0.217, 0.056)	0.247	-0.167 (-0.293, -0.041)	0.010	-0.059 (-0.147, 0.029)	0.188
Reference: normal bone density Osteopenia Osteoporosis Age, years	-2.533 (-12.027, 6.961) -13.280 (-32.867, 6.307) -0.189 (-0.502, 0.123)	0.598 0.182 0.233	-0.898 (-9.471, 7.675) -3.241 (-20.607, 14.125) -0.331 (-0.622, -0.040)	0.836 0.712 0.026	2.002 (-4.301, 8.305) -4.550 (-17.121, 8.020) -0.137 (-0.345, 0.0707)	0.530 0.475 0.194
<i>Reference: males</i> Female	-6.746 (-18.224, 4.732)	0.247	-2.320 (-13.092, 8.453)	0.670	-4.516 (-12.097, 3.066)	0.240
BMI, kg/m ²	0.119 (-0.591, 0.829)	0.741	0.754 (0.093, 1.415)	0.026	0.040 (-0.429, 0.509)	0.865

Table 5-4: Multivariable regression model (model B) of extrapulmonary determinants of domains of SGRQ.

Models B by domains of impairment: SGRQ: St George Respiratory Questionnaire, Ln-CRP: natural logarithm of high sensitivity C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson comorbidity Index, Sarcopenia= presence of sarcopenia. Age, sex and BMI explained the 0.7%, 11.8%, 2.7% of variance in the symptoms, activity and impact domains scores, respectively The analyses of the tertile models (models C-1 & C-2) performed in the combined disease groups showed that fewer steps/day and increased HADS scores were associated with greater HRQoL impairment (Figure 5-A, Model C-1). The differences in the SGRQ predicted scores for each tertile were greater than the 4-unit SGRQ MCID. Systemic inflammation also showed statistically and clinically significant differences between the first and third tertile. While the differences between tertiles for isometric leg strength were not statistically significant, the mean difference between tertiles 1 and 3 was 8.1 units, twice the SGRQ MCID. Similarly, being sarcopenic was statistically associated with a predicted SGRQ score which was 2-fold greater than the MCID (p < 0.05) (Figure 5-A).

Adjusted simple linear regression models using categorical steps/day [A], CCI B], In(hs-CRP) [C]; HADS scores [D], sarcopenia [E] and leg strength [F]). Models adjusted by sex, BMI and age (CCI=sex and BMI only). Each mark on the Y axis represents a MCID (4 points).* p< 0.05; ** p< 0.01; ***p< 0.001. Steps/day, In(hs-CRP); HADS scores and leg strength transformed into tertiles. CCI transformed into median split as lower (1st) and higher (2nd) half of median, respectively. SGRQ: St George Respiratory Questionnaire, In(hs-CRP):natural logarithm of high sensitivity C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson comorbidity Index

In model C-2 (multivariable tertile model), higher SGRQ scores were significantly associated with greater reduction in physical activity, higher systemic inflammation, HADS and CCI scores (Figure 5-B; *Table S-2 - <u>Supplementary Information</u>*).

Model adjusted by sex, BMI and age. * p< 0.05; ** p< 0.01; ***p< 0.001. Steps/day, In-hsCRP, HADS and Strength transformed into tertiles.2nd and 3rd: second and third tertile, respectively. 1st tertile or absence of the condition used as a reference category. CCI transformed into median split: CCI 1(reference category) & 2: below and above median, respectively. SGRQ: St George Respiratory Questionnaire, Ln-CRP: natural logarithm of C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson Comorbidity Index; BD: bone density; Sarcopenia 1= presence of sarcopenia.

5.5. Discussion

In this study, we analysed the relationships between extrapulmonary disease characteristics and HRQoL in adults with severe asthma and bronchiectasis. Extrapulmonary disease characteristics represent one of the three proposed treatable trait domains⁵¹, and have proven to be important determinants of HRQoL in COPD^{102, 128, 271}. We found that extrapulmonary characteristics had similar impacts in both severe asthma and bronchiectasis. Moreover, the traits of steps/day, isometric leg strength, and systemic inflammation, were significantly associated with HRQoL. Increasing severity of these variables was associated with statistically and clinically significant impairments in HRQoL. Data characterising the interrelationship between HRQoL and extrapulmonary characteristics outside the comorbidity domain in severe asthma and bronchiectasis populations are scarce. Qualitative studies in severe asthma give some perspective of the extent of HRQoL impairment, and the importance to patients of improving this outcome.⁵³ Considering the multifactorial nature of HRQoL, and the deleterious consequences that HRQoL impairment has on wellbeing, addressing this knowledge gap is of utmost importance. Specifically, it may identify potential clinically important treatment targets, or treatable traits, that aim to improve the physical and psychosocial impact of the disease¹⁴.

Physical activity was significantly and independently associated with HRQoL, both in the analyses by each disease as well as in the combined disease groups. We have previously reported on the degree of physical activity reduction and its impact on respiratory markers in severe asthma and bronchiectasis³⁹³ (see <u>Chapter 4</u>). This means that impaired physical activity impacts both extrapulmonary and airway domains in the treatable traits model of care, and raises the possibility that treating this component of the disease may lead to widespread benefits. The benefits of engaging in physical activity for the airway domain are recognised^{271, 381}. These include reduced risk of exacerbations and healthcare use, better asthma control, and better exercise-capacity. Our results suggest that physical activity interventions may have broader effects and improve HRQoL for people with severe asthma and bronchiectasis. Therefore, targeted interventions for these populations need to be designed and tested. We observed a clear dose-response relationship in the tertile regression models. For each tertile increase in steps/day, the predicted mean score of the SGRQ (Figure 5-A) significantly decreased (improved HRQoL) by close to 3-times the MCID. Additionally, in the multivariable tertile model participants accumulating >7048 steps/day (tertile 3) displayed a statistically significant difference in the SGRQ, compared to tertile 1 (\leq 4125 steps/day) of more than 3-times the MCID (Figure 5-B; Table S-2 - Supplementary

Information). This dose-response relationship is recognised in physical activity guidelines, since a protective effect on morbidity is observed at a defined volume (>150 mins/week) and intensity (moderate-vigorous)¹⁷⁴. Additionally, while some evidence suggest that supervised exercise training can improve health status in people with moderate-severe asthma^{81, 87}, exercise protocols of lower intensities have not replicated these results^{84, 398}. Our findings indicate that >7000 steps/day may be the level of physical activity associated with clinically significant improvements in HRQoL, and thus it could be considered an activity target. To achieve this, based on our data, patients would need to engage in at least a 24% increase in steps/day.

Physical activity has also been linked to several of the other extrapulmonary characteristics, including muscle-strength and sarcopenia. The non-significant association between strength and SGRQ in bronchiectasis could be because the strength measurements obtained in this group were rather low, which could have led to a floor effect in the analysis. Similarly, the small number of people with sarcopenia in the severe asthma group may have not been enough to detect a significant association with HRQoL. It is likely that the age difference between disease populations may have played a role in these differences, since both muscle strength and muscle mass are known to decrease with age³⁹⁶. Nevertheless, both in severe asthma and bronchiectasis the regression coefficients denoted a beneficial relationship between the absence of the condition and better scores in the SGRQ. When analysing these variables in a larger population (combined disease group) we found that improved function in these measures was significantly and clinically associated with better HRQoL. In COPD, skeletal muscle dysfunction is considered an important systemic consequence that is not exclusive to severe disease²⁷⁵, and that has been associated with increased health-care use and mortality in COPD¹²⁸. Deconditioning, the complex physiological process that occurs secondary to inactivity and results in functional loss, is considered as one of the main

mechanisms underpinning skeletal muscle dysfunction¹²⁸, and is closely related to poor disease outcomes²⁵⁸. In severe asthma and bronchiectasis, muscle-strength is considerably less studied. There is a trend towards decreased quadriceps muscle-strength in bronchiectasis^{140, 287}, but very little data exists reporting an association between strength and HRQoL¹⁴⁰. In moderate to severe asthma, impairment of quadriceps endurance, but not strength, was observed both in adults³⁰⁶ and children³⁹⁹. Considering that in severe asthma and bronchiectasis, factors affecting muscle-strength may not be as common as those seen in severe COPD, it is likely that decreased muscle-strength and its impact on HRQoL will be more tenuous in these conditions. Supporting this hypothesis, we have previously reported that the decrease in physical in moderate-severe COPD is worse than that found in severe asthma and bronchiectasis³⁹³ (see Chapter 4). In addition, systemic inflammation, which is a prevalent feature in chronic respiratory diseases^{153, 400}, and is regarded as a precursor of muscle-atrophy and weakness¹²⁸, was lower in our severe asthma and bronchiectasis population compared to previously reported values for COPD³⁹³. Lastly, low BMI, another factor associated with muscle-depletion, sarcopenia, and skeletal muscle dysfunction in COPD¹²⁸, was not common in our populations. Despite the lower prevalence of factors that adversely impact skeletal muscle function in severe asthma and bronchiectasis, our results nonetheless demonstrate that improved muscle function was significantly and clinically associated with better HRQoL, alluding to the potential benefit of addressing these outcomes. Additionally, corticosteroids commonly used in severe asthma, may affect muscle metabolism and strength⁴⁰¹. Integrated disease management programmes, including pulmonary rehabilitation⁸⁹, could be an approach to address this feature.

Higher levels of systemic inflammation remained associated with poorer HRQoL in all the analyses, a trend mostly observed in participants with hs-CRP levels >5.0 mg/L (tertile 3). Hs-CRP is a recognised independent predictor of cardiovascular events in healthy populations⁴⁰²,

and associated with increased risk of exacerbation in severe asthma⁵² and in COPD⁴⁰³. In bronchiectasis, high hs-CRP levels have been reported both during exacerbation and in stable disease, and positively correlate with poorer HRQoL and disease severity⁴⁰⁰. In severe asthma and bronchiectasis no treatment studies have targeted systemic inflammation. Its detrimental relationship with HRQoL needs further investigation.

Comorbidity was also associated with HRQoL. Of all extrapulmonary characteristics we examined, HADS explained the highest proportion of variance in the SGRQ. Additionally, in the multivariable tertile model, the differences in the SGRQ were statistically and clinically meaningful for each tertile compared with the reference. Anxiety and depression are common in severe asthma⁵² and bronchiectasis⁴⁰⁴ and their impact on HRQoL in these diseases has been recognised^{14, 404}. However, studies reporting interventions that target these traits are scarce. In severe asthma, only one feasibility study has been reported⁴⁰⁵. In bronchiectasis, no study has targeted anxiety and depression, and in an RCT of exercise training, mood did not improve¹⁶⁴. Therefore, the assessment, recognition and treatment of psychological health in these conditions is a priority and may improve HRQoL⁷³.

We performed analysis by SGRQ domains to test the relationships between its different domains and the extrapulmonary characteristics. The only variable significantly associated with the symptom domain was HADS. Reasons may be that symptoms are more closely related to pulmonary characteristics and therefore, be more efficiently addressed with pharmacological measures³⁹¹. The extrapulmonary characteristics however, explained 45.3% and 35.5% of the variance of the activity and impact domain scores, respectively. This suggests that extrapulmonary characteristics are important drivers in HRQoL. The activity domain refers to impairment of activities that are limited by breathlessness, a symptom that is known to be associated with lower physical activity³⁹³ (see Chapter 4). This domain has

been suggested as a better measure of asthma control when assessing the impact of the disease in asthma populations⁴⁰⁶, and therefore characterising this domain and its associations with other disease characteristics is needed⁴⁰⁷. We provide important information in that regard and suggest that the activity and impact domains could be addressed by these extrapulmonary outcomes.

Our study has some limitations. Its cross-sectional design does not infer causality of our findings. Also, our populations are not demographically matched, which limits comparison between groups. Nevertheless, after adjusting for age and sex, diagnosis was not a significant interaction in the relationship between SGRQ and the extrapulmonary variables. Another limitation was that comorbidities not scored in the CCl were not assessed and therefore, the weight of this variable may be underestimated. In COPD, however, cardiovascular or multiple comorbidities were not associated with significantly higher SGRQ scores¹⁰². Lastly, isokinetic equipment is considered a more sensitive option to measure muscle-strength, but access is limited. We measured muscle-strength using a static measure, which may not accurately inform dynamic function. However, our measure tested strength at multiple joints, assessing extension strength through the whole lower limb rather than isolated muscles. Despite these limitations, our study provides novel and important data for interventions aiming to improve HRQoL in severe asthma and bronchiectasis populations.

5.6. Conclusion

Decreased physical activity, anxiety and depression, leg strength and systemic inflammation are shared extrapulmonary characteristics that are independently associated with HRQoL in severe asthma and bronchiectasis, especially with the activity and impact domains. Our results suggest that these extrapulmonary features should be considered as part of the multidimensional assessment of these conditions, and they may represent treatable traits in severe asthma and bronchiectasis. Future research should focus on exploring targeted extrapulmonary interventions that address all of the dimensions that negatively impact the HRQoL of patients with severe asthma and bronchiectasis.

5.7. Supplementary information

S-1: Adjusted simple linear regression models testing interaction effect between diagnosis and each independent variable

Interaction of diagnosis in the relationship between SGRQ and independent variables

	Coefficient (95% CI)	<i>p</i> -value
Steps/day * bronchiectasis (vs. severe asthma)	-0.000 (-0.002, 0.002)	0.868
CCI score * bronchiectasis (vs. severe asthma)	1.037 (-2.628, 4.701)	0.577
Ln(hs-CRP) * bronchiectasis (vs. severe asthma)	0.489 (-4.887, 5.866)	0.857
HADS score * bronchiectasis (vs. severe asthma)	0.174 (-0.747, 1.096)	0.708
Sarcopenia (vs. no sarcopenia) * bronchiectasis	-2.338 (-19.499, 14.822)	0.788
(vs. severe asthma)		
Isometric leg strength* bronchiectasis (vs. severe	0.076 (-0.100, 0.252)	0.393
asthma)		
Osteopenia (vs. normal bone density) *		
bronchiectasis (vs. severe asthma)	4.061 (-10.658, 18.780)	0.586
Osteoporosis (vs. normal bone density) *	-23.549 (-55.032, 7.935)	0.141
bronchiectasis (vs. severe asthma)		

Each model adjusted by age, sex and BMI. CCI adjusted by sex and BMI. Severe asthma used as reference diagnosis for bronchiectasis (dummy variable). CCI: Charlson comorbidity index; Ln(hs-CRP): natural logarithm of high sensitivity C-reactive protein; HADS: hospital anxiety and depression scale questionnaire.

Predictors of SGRQ in severe asthma and bronchiectasis			
Adj. R ² =0.4117			
	Coefficient (95% CI)	<i>p</i> - value	
1 st tertile (reference category)			
Steps/day, 2 nd tertile	-5.066 (-13.573, 3.441)	0.240	
Steps/day, 3 rd tertile	- 15.473 (-24.664, -6.281)	0.001	
Below median (reference category)			
CCI score, above median	7.167 (0.907, 13.427)	0.025	
1 st tertile (reference category)			
Ln(hs-CRP), 2 nd tertile	5.341 (-0.772, 11.453)	0.086	
Ln(hs-CRP), 3 rd tertile	10.673 (2.534, 18.813)	0.011	
1 st tertile (reference category)			
HADS score, 2 nd tertile	14.540 (7.689, 21.392)	<0.001	
HADS score, 3 rd tertile	14.736 (8.661, 20.811)	<0.001	
No sarcopenia (reference category)			
Sarcopenia	-0.101 (-7.934, 7.732)	0.980	
1 st tertile (reference category)			
Isometric leg strength, 2 nd tertile	-1.673 (-9.319, 5.973)	0.665	
Isometric leg strength, 3 rd tertile	-3.755 (-11.915, 4.405)	0.363	
Normal bone density (reference category)			
Osteopenia	0.668 (-5.668, 7.005)	0.835	
Osteoporosis	-8.963 (-22.068, 4.142)	0.178	
Age, years	-0.136 (-0.346, 0.074)	0.202	
Male (reference category)			
Female	-0.575 (-8.078, 6.927)	0.879	
BMI, kg/m ²	0.209 (-0.298, 0.717)	0.415	

S-2: Multivariable regression model of independent non-respiratory determinants of SGRQ - categorical outputs (Models B.1)

Model adjusted for age, sex and BMI. Steps/day, In(hs-CRP), HADS and Isometric leg strength transformed into tertiles. CCI transformed into median split. SGRQ: St George Respiratory Questionnaire, Ln(hs-CRP): natural logarithm of high sensitivity C-reactive protein, HADS: Hospital Anxiety and Depression Scale, CCI: Charlson comorbidity Index, BMI: body mass index.

6.1. Major findings and discussion

Overview

Severe asthma, COPD and bronchiectasis are common obstructive airway diseases that contribute greatly to the illness burden in our community^{27, 98}. As reviewed in Chapter 1 of this Thesis, the distinctive airflow limitation observed in each of these diseases has its genesis in different etiological and pathophysiological mechanisms, which nevertheless, are all underpinned by abnormal and persistent inflammatory processes^{15, 34, 106}. The burden of these diseases on patients can also be explained by the presence of shared, recurrent and debilitating symptoms such as breathlessness, chest tightness, cough, recurrent infections and by frequent and disabling exacerbations^{15, 408}. In COPD, these symptoms are tightly related to a vicious-circle in which the reduction of exercise capacity and lower levels of physical activity lead to physical deconditioning, promoting a feeling of dependency, depression, social isolation and further impaired health status^{102, 128, 271}. In terms of the nonpharmacological management of these disease characteristics, important advances have been achieved for COPD, where the characterisation and promotion of physical activity has been an important area of research and is now recognised as an important objective in clinical practice²⁷¹. Also reviewed in Chapter 1, was the promotion of physical activity and reduction of sedentary behaviour for the prevention and management of several chronic diseases and all-cause mortality, and that these are currently important public health messages^{174, 195}.

The focus of this Thesis is the characterisation and comparison of physical activity in obstructive airway diseases, and the associations of this behaviour with different disease characteristics common in severe asthma, bronchiectasis and COPD. The characterisation of

sedentary behaviour in a severe asthma population and its relationship with physical activity is a secondary focus of this Thesis. Consequently, after reviewing the current literature that characterises these behaviours in obstructive airway diseases, I have presented three primary data chapters in which I address the characterisation and cross-sectional associations of physical activity primarily, and sedentary behaviour to a lesser degree, with disease characteristics and health-related quality of life in adults with severe asthma, bronchiectasis and COPD.

Gaps in the literature and main findings

In the review of the literature presented in Chapter 1 and 2, I identified gaps in knowledge, including the paucity of literature on the characterisation and association of physical activity and sedentary time with pulmonary and extrapulmonary disease characteristics in severe asthma and bronchiectasis, and the lack of literature making direct comparisons of the level of physical activity among these obstructive airway diseases and COPD. The likely association that exist between health-related quality of life and physical activity in severe asthma and bronchiectasis was also largely under-researched.

As a way to address these gaps in knowledge, in Chapters 3, 4 and 5 I addressed the characterisation of physical activity in obstructive airway diseases, and its association with disease characteristics in different contexts. These include:

- the characterisation of physical activity and sedentary time in severe asthma, and the association of these behaviours with each other, and with prevalent diseases characteristics including asthma control, exercise capacity and systemic inflammation (Chapter 3),
- (ii) the characterisation and comparison of physical activity in severe asthma, bronchiectasis, moderate to severe COPD, and people without respiratory

diseases with important shared pulmonary characteristics of these diseases (Chapter 4), and lastly,

(iii) the characterisation of shared extrapulmonary characteristics in severe asthma and bronchiectasis, including physical activity, comorbidities, isometric muscle strength, and anxiety and depression, and their association with health-related quality of life (Chapter 5).

The main findings of these studies are:

- People with asthma of different severities engage in lower levels of physical activity compared to people without asthma. This lower physical activity trend tended to be more pronounced in females compared with males, and in older people with asthma compared to their younger counterparts. Higher levels of physical activity were associated with better measures in several disease characteristics. Sedentary behaviour has not been widely addressed in asthma, but there was also a trend showing a detrimental association between higher engagement in sedentary time and worse disease characteristics (Chapter 2).
- Compared to people without respiratory diseases, people with severe asthma engage in lower levels of moderate and vigorous physical activity. The levels of sedentary time were not significantly different between groups. Higher levels of activity and lower levels of sedentary time were linked to better exercise capacity, asthma control, and decreased systemic inflammation (Chapter 3).
- Physical activity impairment is a shared behavioural characteristic of people with COPD, severe asthma and bronchiectasis. The degree of impairment in severe asthma and bronchiectasis though, is not as severe as in moderate to severe COPD.

Shared clinical characteristics, such as exercise capacity and airflow limitation explain an important proportion of this impairment in OAD (Chapter 4).

 Physical inactivity and other extrapulmonary characteristics, including anxiety and depression, isometric leg strength and systemic inflammation are shared extrapulmonary characteristics that are independently associated with healthrelated quality of life in severe asthma and bronchiectasis populations, especially with the activity and impact domains.

Chapter 2: Physical activity and sedentary time in adults with asthma

In Chapter 2, I presented a literature review of physical activity and sedentary time in people with asthma. After conducting a systematic literature search in four electronic databases, I identified 42 studies measuring physical activity (mostly) or sedentary time in people with asthma. The main findings from this review were that people with asthma of different severities engage in lower levels of physical activity, a trend that seems to increase as people with asthma age, and that is more evident in females with asthma compared with males, and that higher levels of physical activity may have a beneficial impact on asthma outcomes. An important highlight of this review is that it is the first to include measures of physical activity using activity monitors. I therefore conducted a meta-analysis from eligible studies, finding that the pooled mean (95%CI) steps/day for people with asthma or more severe asthma populations, this estimate provides a first reference that can be updated and developed with future studies. Another highlight of this review is that I investigated associations between levels of physical activity and disease characteristics. Higher levels of physical activity were associated with better measures of lung function, disease control, health status, and health

care use. Some of these beneficial associations, such as exacerbations and lung function, were also tested in longitudinal studies showing a weak but significant positive association. Measures of sedentary time had not been summarised previously in adults with asthma. There were considerably fewer studies measuring sedentary time in people with asthma compared with physical activity. There was not a clear trend in terms of level of engagement compared to people without asthma. However, the eligible studies reported a detrimental association between higher engagement in sedentary time and worse disease outcomes such as health care use, lung function, asthma control and exercise capacity.

In this review, I also identified a paucity of literature that reported on the measurement of physical activity and sedentary time in people with severe asthma, a knowledge gap that I aimed to address in Chapter 3.

Chapter 3: physical activity and sedentary time in severe asthma

In the first primary data study I present in this Thesis (Chapter 3), I used an accelerometer to measure the levels of physical activity and sedentary time in a severe asthma population and in people without respiratory diseases, and I examined the associations between these two behaviours with several disease outcomes. Data characterising the level of physical activity in severe asthma using an activity monitor were scarce. In a study from 2017, Bahmer and colleagues found that people with severe asthma were significantly less active than people without respiratory disease and to those with mild-moderate asthma²⁹¹. The authors also found that this reduction was associated with measures of lung function²⁹¹. Studies examining associations of the levels of physical activity with diseases outcomes other than airflow limitation in severe asthma or measuring sedentary time in this disease did not exist, as I identified in the literature review in Chapter 2.

221

In my study of 61 participants with severe asthma and 61 age- and sex-matched healthy controls, the levels of moderate to vigorous physical activity and steps/day of the severe asthma group were significantly decreased compared to controls. A different trend was observed for light physical activity, people with severe asthma accumulated slightly higher levels of physical activity compared to controls, and for sedentary time, where no statistically significant differences were observed between groups. Higher levels of physical activity (steps/day) were significantly associated with better exercise capacity and lower systemic inflammation, even after adjusting for the level of sedentary time. Similarly, higher levels of MVPA, adjusted for sedentary time, were significantly associated with better asthma control. These results suggest that different disease characteristics have different associations with the intensity of physical activity, and therefore interventions aiming at improving asthma control should aim for higher intensities of activities than those interventions aimed at improving exercise capacity. A second important finding was that, despite the detrimental significant associations found between sedentary time and most of the disease outcomes, these associations were attenuated to the null when adjusted for physical activity levels suggesting that the negative effects of sedentary time on respiratory outcomes could be mitigated by engaging in moderate physical activity. This important observation has implications for the design of future intervention studies in these patient groups.

This study was novel for several reasons. First, it was the second study reporting devicemeasured levels of physical activity in severe asthma. Second, I tested how physical activity was associated with several diseases' outcomes, including several outcomes that have not been very well characterised in severe asthma, such as exercise capacity and systemic inflammation. My study addresses the need identified by recent studies which have suggested these outcomes as potential treatment targets or markers for the disease^{82, 376}. Lastly, sedentary time had not been characterised nor associated with disease characteristics

222

before my study. Together, and as highlighted in an editorial which accompanied my publication⁴⁰⁹, my research suggests that physical inactivity should be addressed in people with severe asthma, and that the activity message should consider coaching patients regarding different spectrums of movement and intensities to achieve the expected goals.

Chapter 4: Physical Activity in Obstructive Airway Diseases

The fact that the disease characteristics measured in Chapter 3 are also prevalent in bronchiectasis and COPD led to my second study (Chapter 4), where I aimed to extend the characterisation and comparison of physical activity in severe asthma to other obstructive airway diseases including the widely researched COPD²⁷¹, and bronchiectasis, a disease in which the measurement of this behaviour has received slightly more attention than in severe asthma^{284, 286, 287}, but it is still considerably less well-researched than COPD.

In this study, which included 189 participants with obstructive airway disease and 63 healthy controls, I found that people with severe asthma engaged in similar levels of physical activity compared to people with bronchiectasis, which also means that both diseases presented lower activity levels compared to the group without respiratory diseases. Conversely, both disease populations presented significantly higher levels of physical activity compared to moderate to severe COPD. These similarities and differences in severity were also observed in disease characteristics, such as airflow limitation, exercise capacity, dyspnoea, and systemic and airway inflammation. These characteristics were significant predictors of physical activity in obstructive airway disease, especially exercise capacity and airflow limitation.

The importance of these data lie in the fact that to date, there was no study making direct comparisons between these populations in terms of physical activity reductions and

associations with disease outcomes. In fact, despite that recommendations have been made to include diseases other than COPD in pulmonary rehabilitation programmes to improve outcomes such as exercise capacity and to address inactivity^{89, 410}, very little data exists in severe asthma particularly, to support this recommendation. This is even more important after the recently recognised need to revise and update traditional treatment approaches for diseases like COPD and severe asthma^{12, 51, 125, 149}. The proposed label-free treatable traits management approach⁵¹ for instance, suggests that the management of chronic airway diseases should be based around measurable, clinically important, and treatable characteristics of these diseases rather than the diagnosis itself. Some of the disease characteristics that were significantly associated with physical activity in my study, such as exercise capacity, airflow limitation and systemic inflammation, have also been suggested as treatment targets by this model. In terms of physical activity, however, my study takes a step forward in suggesting that it is reduced physical activity, instead of its consequent deconditioning, that is the trait that should be targeted.

The reason for this is because lower levels of physical activity:

- (i) are prevalent across all these conditions,
- (ii) occurs earlier in the disease than deconditioning, and therefore it could have a preventive role on the latter, and lastly
- (iii) it is associated with other characteristics present in obstructive airways disease including exercise capacity, airflow limitation, systemic inflammation and dyspnoea, which despite of being present at different degrees of severity in each disease, they still predict physical activity levels and therefore could be treatment goals for improving this behaviour.

We expect that these data would guide future interventions aiming at addressing physical inactivity in obstructive airway disease, especially in severe asthma and bronchiectasis, where few data or tailored activity treatment programmes exist.

Chapter 5: Physical activity and health status in severe asthma and bronchiectasis

After testing that physical activity was significantly associated with pulmonary characteristics in obstructive airway disease, in Chapter 5 I sought to test the extent to which physical activity and other extrapulmonary characteristics of severe asthma and bronchiectasis are associated with HRQoL impairment. As a multidimensional and patient-related outcome, improving HRQoL should be one of the foremost goals for patient-centred management in chronic diseases^{14, 411}. Data concerning the impact of pulmonary characteristics on HRQoL in obstructive airway disease have been published elsewhere^{49, 141, 404}. However, there is a scarcity of evidence concerning the association between HRQoL and physical activity and other extrapulmonary characteristics of OAD, specifically for severe asthma and bronchiectasis.

To address this knowledge gap, I evaluated the impact of extra pulmonary characteristics on HRQoL in 70 people with severe asthma and 61 with bronchiectasis. I found that, after adjusting for potential confounders, higher levels of physical activity, isometric muscle strength of the lower limbs and muscle mass, as well as lower levels of depressive and anxiety symptoms, and systemic inflammation were associated with better quality of life in people with severe asthma and bronchiectasis. In addition, as the first study characterising extrapulmonary features in severe asthma and bronchiectasis as an obstructive airway disease entity, and investigating the associations of these features with HRQoL, this study provides relevant clinical messages including:

225

- the severity of extrapulmonary characteristics is similar between these populations, and so is their interaction with health status,
- some of these extrapulmonary characteristics, such as skeletal muscle dysfunction, are widely addressed in COPD but their impact on other diseases is under-recognised,
- (iii) increasing severity of these variables was associated with statistically and clinically significant impairments in HRQoL. The latter point was highlighted as an important observation in Chapter 5 for physical activity. The differences between people in the highest tertile of physical activity compared to those in the lowest tertile (7000 steps/day versus <4200 steps/day, respectively) was 15 units. This was almost 4 times the minimal clinically important difference of four units, for the St. George Respiratory Questionnaire, and a greater difference than that displayed by wellrecognised predictors of health status, such as anxiety and depression.

Overall, from this study I contribute evidence that suggests these extrapulmonary characteristics are potential important treatment targets for interventions aimed at improving health status in these populations, especially for the domains of Activity and Impact of the disease. This study also adds to my previous studies to strengthen the evidence to consider physical activity interventions as a non-pharmacological strategy to improve both pulmonary and extrapulmonary clinical problems in obstructive airway diseases.

6.2. Limitations of this Thesis

The most evident limitation of my Thesis is that the cross-sectional design used in all my studies does not allow me to ascertain directionality of the findings. However, it is likely that the relationship between movement behaviours and disease outcomes follows a bidirectional relationship. This is also backed by the existent and robust body of research for physical activity in COPD. My studies have provided evidence on how the different diseases and their characteristics are associated with physical activity, and this characterisation can guide common, and therefore more efficient strategies to improve this behaviour in obstructive airway diseases.

An additional limitation of my Thesis relates to the differences in populations. In Chapter 4 and 5, the disease populations had demographic characteristics which were considerably different between each other. It needs to be acknowledged that comparing more matched populations in terms of age and sex would have given a more accurate picture of the true impact of the disease on physical activity. Nevertheless, it also needs to be recognised in light of the aetiology and epidemiology of these diseases^{37, 96, 136}, it would be very difficult to match moderate to severe COPD populations to severe asthma and bronchiectasis populations, given the different characteristics of people with these conditions. In terms of age for instance, Toelle et al⁹⁶ illustrated the difference in prevalence at different ages for people with COPD. In their study, the weighted prevalence of people with COPD GOLD stage II or higher increased from 2% at the age of 40-54, up to 7.3%, and 29.2% at the age range of 55-74 and \geq 75 years old, respectively. This is in agreement with the age of our COPD population. In regards to severe asthma, in the prevalence study carried out by Hekking and colleagues, the reported age (mean ± SD) was 62.5 years old, very similar to our median age of our severe asthma population³⁷. In bronchiectasis, Quint et al. reported that in 2013 the overall prevalence of bronchiectasis per 10,000 people increased from 254.9 cases up to 1239.7 for people in their fifties and seventies, respectively¹³⁶. So, overall, the age differences observed in our studies reflect the mean age of real-world disease populations. These age differences will irremediably impact on other clinical characteristics, such as airflow limitation and exercise capacity. Nevertheless, the statistical analysis concluded that, despite the differences between populations, there were no statistically significant interactions between the different diagnoses and the relationship between physical activity and the disease outcomes.

Finally, the measurement of sedentary behaviour in this Thesis was limited to the population with severe asthma only, despite that the paucity of data addressing this behaviour extends to COPD and bronchiectasis. In each of the studies I have presented I also collected sedentary time data using the activPAL. This work with be published during my post-doctoral period. In the next section of this chapter (future directions), I will expand on this topic and how I plan to address this.

6.3. Future directions

What is the prevalence of sedentary behaviour in obstructive airway disease other than severe asthma, and how is this behaviour associated with disease outcomes in those bronchiectasis and COPD?

The data presented in Chapter 3 show that sedentary time was not significantly different in severe asthma compared to people without respiratory disease. In addition, the study shows that when considering physical activity and sedentary time together in the analysis (adjusting for each other), the once statistically significant associations between disease characteristics and sedentary time were attenuated to the null. Since sedentary behaviour has not been

extensively addressed in others obstructive airway diseases, it is unclear whether in bronchiectasis and COPD a similar trend would be observed.

To address this question, I am currently investigating associations between the level and pattern of this behaviour in bronchiectasis and COPD compared to people without respiratory diseases. I am planning to follow a similar approach as that reported in Chapters 3 and 4, with the advantage that in this future work, the measurement of this behaviour will be extracted from a more accurate device (the inclinometer and accelerometer activPAL).

After completion of this work, studies aimed at targeting physical activity in obstructive airway disease will be able to incorporate the knowledge of the relationship between these behaviours in these diseases, which may optimise the results of these interventions. Additionally, it could prompt clinical guidelines to incorporate messages regarding sedentary time as a non-pharmacological strategy in OAD.

Additionally, data in Chapter 5 could be enriched by the consideration of sedentary behaviour as a confounding predictor of poor health status in bronchiectasis and severe asthma.

In term of directions to further extend the knowledge from this Thesis, future longitudinal studies measuring physical activity or sedentary time as an exposure variable could provide more detailed information on the direction of the relationship between these behaviours and disease outcomes.

Furthermore, qualitative studies in severe asthma and bronchiectasis researching patients' perspective on physical activity are needed. The development of these studies, together with the new knowledge generated by my Thesis, will be useful for the design and implementation of future targeted person-centred physical activity interventions aimed at improving this behaviour in people with severe asthma and bronchiectasis.

6.4. Conclusions

Lower levels of physical activity are prevalent in obstructive airway diseases. The decrease in activity seems to be more pronounced in moderate to severe COPD than in severe asthma and bronchiectasis, diseases where the levels of physical activity is similar. Physical activity was significantly associated with clinical and biological characteristics prevalent in the three diseases, and with better health-related quality of life. Levels of sedentary behaviour seems to be similar between severe asthma and healthy population, and its associations with disease characteristics were weaker than those for physical activity. Data characterising and comparing this behaviour in bronchiectasis and COPD is required to define its levels of engagement and associations across obstructive airway diseases. Overall, the research undertaken in this Thesis provides evidence to consider physical activity as a common strategy to improve clinical and biological markers in obstructive airway diseases.

7. References:

- 1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2018. *Accessed September 2018*. Available from: www.ginasthma.org. .].
- From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2018.
 Available from http://goldcopd.org.
- Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26:948-68.
- 4. Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics 2012; 67:1335-43.
- 5. Mao B, Yang JW, Lu HW, Xu JF. Asthma and bronchiectasis exacerbation. Eur Respir J 2016; 47:1680-6.
- 6. Bai TR, Vonk JM, Postma DS, Boezen HM. Severe exacerbations predict excess lung function decline in asthma. Eur Respir J 2007; 30:452-6.
- 7. O'Byrne PM, Pedersen S, Lamm CJ, Tan WC, Busse WW, Group SI. Severe exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med 2009; 179:19-24.
- Donaldson GC. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57:847-52.
- 9. Martinez-Garcia MA, Soler-Cataluna JJ, Perpina-Tordera M, Roman-Sanchez P, Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007; 132:1565-72.
- 10. Fu JJ, McDonald VM, Baines KJ, Gibson PG. Airway IL-1beta and Systemic Inflammation as Predictors of Future Exacerbation Risk in Asthma and COPD. Chest 2015; 148:618-29.
- 11. Magnussen H, Watz H. Systemic inflammation in chronic obstructive pulmonary disease and asthma: Relation with comorbidities. Proceedings of the American Thoracic Society 2009; 6:648-51.
- 12. Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma: redefining airways diseases. Lancet 2018; 391:350-400.
- 13. Negewo NA, McDonald VM, Baines KJ, Wark PA, Simpson JL, Jones PW, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:1495-504.
- 14. McDonald VM, Hiles SA, Jones KA, Clark VL, Yorke J. Health Related Quality of Life Burden in Severe Asthma. Med J Aust 2018; 209:S28-S33.
- 15. Polverino E, Dimakou K, Hurst J, Angel Martinez-Garcia M, Miravitlles M, Paggiaro P, et al. The overlap between bronchiectasis and chronic airways diseases: state of the art and future directions. Eur Respir J 2018.
- 16. Janson C, Marks G, Buist S, Gnatiuc L, Gislason T, McBurnie MA, et al. The impact of COPD on health status: findings from the BOLD study. Eur Respir J 2013; 42:1472-83.

- 17. Based on the Global Strategy for Asthma Management and Prevention and the Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma COPD and Asthma - COPD Overlap Syndrome (ACOS) 2015. Accessed January 2018.] Available from http://ginasthma.org/asthma-copd-and-asthma-copd-overlap-syndromeacos/.
- 18. Cheng WE, Lin HW. The overlap of asthma-copd deteriorated health status and burden in the elderly. Respirology 2015; 20:34.
- 19. Miravitlles M, Soriano JB, Ancochea J, Munoz L, Duran-Tauleria E, Sanchez G, et al. Characterisation of the overlap COPD-asthma phenotype. Focus on physical activity and health status. Respiratory Medicine 2013; 107:1053-60.
- 20. Kang HR, Choi GS, Park SJ, Song YK, Kim JM, Ha J, et al. The effects of bronchiectasis on asthma exacerbation. Tuberc Respir Dis (Seoul) 2014; 77:209-14.
- 21. Martinez-Garcia MA, de la Rosa Carrillo D, Soler-Cataluna JJ, Donat-Sanz Y, Serra PC, Lerma MA, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187:823-31.
- 22. Patel IS, Vlahos I, Wilkinson TM, Lloyd-Owen SJ, Donaldson GC, Wilks M, et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170:400-7.
- 23. Asthma, chronic obstructive pulmonary disease and other respiratory diseases in Australia. Cat. no. ACM 20. Canberra: Australian Institute of Health and Welfare; 2010.] Available from https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-conditions/asthma-chronic-obstructive-pulmonary-disease-and/contents/summary.
- 24. Bisaccioni C, Aun MV, Cajuela E, Kalil J, Agondi RC, Giavina-Bianchi P. Comorbidities in severe asthma: frequency of rhinitis, nasal polyposis, gastroesophageal reflux disease, vocal cord dysfunction and bronchiectasis. Clinics (Sao Paulo) 2009; 64:769-73.
- 25. WHO. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. In: Nikolai JBa, Khaltaev, eds. Geneva: World Health Organization, 2007.
- 26. Council AHMA. National Strategic Framework for Chronic Conditions. In: Government A, ed. Canberra: Australian Government, 2017.
- Australian Institute of Health and Welfare 2017. The burden of chronic respiratory conditions in Australia: a detailed analysis of the Australian Burden of Disease Study 2011. Australian Burden of Disease Study series no. 14. BOD 15. Canberra: AIHW. Accessed February 2018.] Available from https://www.aihw.gov.au/reports/burden-of-disease/burden-chronic-respiratory-conditions/contents/table-of-contents.
- 28. The Global Asthma Report 2014. Auckland, New Zealand: Global Asthma Network, 2014.

- 29. To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 2012; 12:204.
- 30. Deloitte. The Hidden cost of asthma. Asthma Australia National Asthma Council Australia, 2015.
- Ebmeier S, Thayabaran D, Braithwaite I, Bénamara C, Weatherall M, Beasley R. Trends in international asthma mortality: analysis of data from the WHO Mortality Database from 46 countries (1993–2012). The Lancet 2017; 390:935-45.
- 32. Report & Statistics: Asthma Mortality Statistics. National Asthma Council Australia. Accessed August 2018. 2017.] Available from <u>https://www.nationalasthma.org.au/living-with-asthma/resources/health-professionals/reports-and-statistics/asthma-mortality-statistics</u>.
- Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J 2014; 43:343-73.
- 34. Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med 2017; 377:965-76.
- 35. Juniper EF, O'Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999; 14:902-7.
- 36. Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol 2004; 113:59-65.
- 37. Hekking PP, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015; 135:896-902.
- 38. von Bulow A, Kriegbaum M, Backer V, Porsbjerg C. The prevalence of severe asthma and low asthma control among Danish adults. J Allergy Clin Immunol Pract, 2014:759-67.
- 39. Prevalence of asthma: From Severe Asthma Toolkit. Accessed May 2018.
 2018.] Available from https://toolkit.severeasthma.org.au/severe-asthma/prevalence-burden/.
- 40. Reddel HK, Sawyer SM, Everett PW, Flood PV, Peters MJ. Asthma control in Australia: a cross-sectional web-based survey in a nationally representative population. Med J Aust 2015; 202:492-7.
- 41. Bourdin A, Molinari N, Vachier I, Pahus L, Suehs C, Chanez P. Mortality: a neglected outcome in OCS-treated severe asthma. Eur Respir J 2017; 50.
- 42. Omachi TA, Iribarren C, Sarkar U, Tolstykh I, Yelin E, Katz PP. Risk factors for death among adults with severe asthma. Ann Allergy Asthma Immunol 2008; 101:130-6.
- 43. Goeman DP, Abramson MJ, McCarthy EA, Zubrinich CM, Douglass JA. Asthma mortality in Australia in the 21st century: a case series analysis. BMJ Open 2013; 3:e002539.

- 44. Asthma snapshot. Australian Institute of Health and Walfare. *Accessed January 2019* 2018.] Available from https://www.aihw.gov.au/reports/chronic-respiratory-conditions/asthma/contents/asthma.
- 45. Carey MA, Card JW, Voltz JW, Arbes SJ, Jr., Germolec DR, Korach KS, et al. It's all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18:308-13.
- 46. Almqvist C, Worm M, Leynaert B. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 2007; 0:070907221144001-???
- 47. Women most likely to die from asthma older women urged to take extra care. National Asthma Council Australia. *Accessed January 2019*.] Available from <u>https://www.nationalasthma.org.au/news/2016/women-most-likely-to-die-from-asthma-older-women-urged-to-take-extra-care</u>.
- 48. Sadatsafavi M, Lynd L, Marra C, Carleton B, Tan WC, Sullivan S, et al. Direct health care costs associated with asthma in British Columbia. Can Respir J 2010; 17:74-80.
- 49. Shaw DE, Sousa AR, Fowler SJ, Fleming LJ, Roberts G, Corfield J, et al. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J 2015; 46:1308-21.
- 50. Boulet LP. Influence of comorbid conditions on asthma. Eur Respir J 2009; 33:897-906.
- 51. Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J 2016; 47:410-9.
- 52. McDonald VM, Hiles SA, Godbout K, Harvey ES, Marks GB, Hew M, et al. Treatable traits can be identified in a severe asthma registry and predict future exacerbations. Respirology 2018; Accepted 1 August 2018.
- 53. Foster JM, McDonald VM, Guo M, Reddel HK. "I have lost in every facet of my life": the hidden burden of severe asthma. Eur Respir J 2017; 50:pii: 1700765.
- 54. Eassey D, Reddel HK, Foster JM, Kirkpatrick S, Locock L, Ryan K, et al. "...I've said I wish I was dead, you'd be better off without me": A systematic review of people's experiences of living with severe asthma. J Asthma 2018; Apr 4:1-12.
- 55. Hiles SA, Harvey ES, McDonald VM, Peters M, Bardin P, Reynolds PN, et al. Working while unwell: Workplace impairment in people with severe asthma. Clin Exp Allergy 2018; 48:650-62.
- 56. Haselkorn T, Chen H, Miller DP, Fish JE, Peters SP, Weiss ST, et al. Asthma control and activity limitations: insights from the Real-world Evaluation of Asthma Control and Treatment (REACT) study. Ann Allergy Asthma Immunol 2010; 104:471-7.
- 57. Lefebvre P, Duh MS, Lafeuille MH, Gozalo L, Desai U, Robitaille MN, et al. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. J Allergy Clin Immunol 2015; 136:1488-95.

- 58. King GG, James A, Harkness L, Wark PAB. Pathophysiology of severe asthma: We've only just started. Respirology 2018; 23:262-71.
- 59. Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. Annu Rev Pathol 2015; 10:511-45.
- 60. Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ. Non-eosinophilic corticosteroid unresponsive asthma. Lancet 1999; 353:2213-4.
- 61. Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002; 57:875-9.
- 62. Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 2014; 133:1557-63 e5.
- 63. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006; 11:54-61.
- 64. Holgate S. Pathogenesis of Asthma. Clinical and Experimental Allergy 2008; 38:872-97.
- 65. Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 2011; 364:2006-15.
- 66. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, et al. A critical role for eosinophils in allergic airways remodeling. Science 2004; 305:1776-9.
- 67. Phipps S, Benyahia F, Ou TT, Barkans J, Robinson DS, Kay AB. Acute allergeninduced airway remodeling in atopic asthma. Am J Respir Cell Mol Biol 2004; 31:626-32.
- 68. Davies DE, Wicks J, Powell RM, Puddicombe SM, Holgate ST. Airway remodeling in asthma: new insights. J Allergy Clin Immunol 2003; 111:215-25; quiz 26.
- 69. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li HS, Li XN, et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine 2010; 181:315-23.
- Desai M. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Respir Crit Care Med 2013; 188:657-63.
- 71. Wenzel SE. Asthma phenotypes: The evolution from clinical to molecular approaches. Nature Medicine 2012; 18:716-25.
- 72. Severe Asthma Checklist: From Severe Asthma Toolkit. 2018. *Accessed May* 2018.] Available from <u>https://www.severeasthma.org.au/severe-asthma-checklist/</u>.
- 73. Clark VL, Gibson PG, Genn G, Hiles SA, Pavord ID, McDonald VM. Multidimensional assessment of severe asthma: A systematic review and meta-analysis. Respirology 2017; 22:1262-75.
- 74. Gibson PG, McDonald VM. Management of severe asthma: targeting the airways, comorbidities and risk factors. Intern Med J 2017; 47:623-31.
- 75. Grainge CL, Maltby S, Gibson PG, Wark PA, McDonald VM. Targeted therapeutics for severe refractory asthma: monoclonal antibodies. Expert Rev Clin Pharmacol 2016; 9:927-41.
- 76. Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet 2017; 390:659-68.
- 77. Lingner H, Ernst S, Grobetahennig A, Djahangiri N, Scheub D, Wittmann M, et al. Asthma control and health-related quality of life one year after inpatient pulmonary rehabilitation: the ProKAR Study. J Asthma 2015; 52:614-21.
- 78. Trevor JL, Bhatt SP, Wells JM, Kirkpatrick D, Schumann C, Hitchcock J, et al. Benefits of completing pulmonary rehabilitation in patients with asthma. Journal of Asthma 2015; 52:969-73.
- 79. Turk Y, Van Huisstede A, Franssen FME, Hiemstra PS, Rudolphus A, Taube C, et al. Effect of an Outpatient Pulmonary Rehabilitation Program on Exercise Tolerance and Asthma Control in Obese Asthma Patients. Journal of Cardiopulmonary Rehabilitation and Prevention 2017; 37:214-22.
- 80. Candemir I, Ergun P, Kaymaz D. Efficacy of a multidisciplinary pulmonary rehabilitation outpatient program on exacerbations in overweight and obese patients with asthma. Wien Klin Wochenschr 2017; 129:655-64.
- 81. Mendes FA, Goncalves RC, Nunes MP, Saraiva-Romanholo BM, Cukier A, Stelmach R, et al. Effects of aerobic training on psychosocial morbidity and symptoms in patients with asthma: a randomized clinical trial. Chest 2010; 138:331-7.
- 82. Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM, Fernandes FL, et al. The Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A Randomized Controlled Trial. American Journal of Respiratory & Critical Care Medicine 2017; 195:32-42.
- 83. Turner S, Eastwood P, Cook A, Jenkins S. Improvements in symptoms and quality of life following exercise training in older adults with moderate/severe persistent asthma. Respiration 2011; 81:302-10.
- 84. Coelho CM, Reboredo MM, Valle FM, Malaguti C, Campos LA, Nascimento LM, et al. Effects of an unsupervised pedometer-based physical activity program on daily steps of adults with moderate to severe asthma: a randomized controlled trial. J Sports Sci 2018; 36:1186-93.
- 85. Mendes FA, Almeida FM, Cukier A, Stelmach R, Jacob-Filho W, Martins MA, et al. Effects of aerobic training on airway inflammation in asthmatic patients. Medicine & Science in Sports & Exercise 2011; 43:197-203.
- 86. Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for asthma. The Cochrane database of systematic reviews 2013; 9:CD001116.

- 87. Franca-Pinto A, Mendes FA, de Carvalho-Pinto RM, Agondi RC, Cukier A, Stelmach R, et al. Aerobic training decreases bronchial hyperresponsiveness and systemic inflammation in patients with moderate or severe asthma: a randomised controlled trial. Thorax 2015; 70:732-9.
- 88. Majd S, Apps LD, Hudson N, Hewitt S, Eglinton E, Murphy A, et al. Protocol for a feasibility study to inform the development of a multicentre randomised controlled trial of asthma-tailored pulmonary rehabilitation versus usual care for individuals with severe asthma. BMJ Open 2016; 6:e010574.
- 89. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188:e13-64.
- 90. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, et al. Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function. N Engl J Med 2016; 374:1811-21.
- 91. Mullerova H, Maselli DJ, Locantore N, Vestbo J, Hurst JR, Wedzicha JA, et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest 2015; 147:999-1007.
- 92. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005; 60:925-31.
- 93. Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet 2005; 365:2225-36.
- 94. Lamprecht B, McBurnie MA, Vollmer WM, Gudmundsson G, Welte T, Nizankowska-Mogilnicka E, et al. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest 2011; 139:752-63.
- 95. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health 2015; 5:020415.
- 96. Toelle BG, Xuan W, Bird TE, Abramson MJ, Atkinson DN, Burton DL, et al. Respiratory symptoms and illness in older Australians: the Burden of Obstructive Lung Disease (BOLD) study. Med J Aust 2013; 198:144-8.
- 97. Economic Impact of COPD. Fact sheet: A report into the economic impact of Chronic Obstructive Pulmonary Disease (COPD) and cost effective solutions report. Key Research Findings. *Accessed February 2018*.] Available from <u>https://lungfoundation.com.au/health-professionals/clinical-resources/publications/economic-impact-of-copd/</u>.
- 98. Mortality GBD, Causes of Death C. GBD 2013: Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specifi c all-cause and cause-specifi c mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385:117– 71.

- 99. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2095-128.
- 100. Australian Institute of Health and Welfare. Australia's Health 2016. Chronic respiratory conditions. *Accessed February 2018*.] Available from <u>https://www.aihw.gov.au/getmedia/9b0bcd12-dd42-40b7-9c2f-3c3bf64e4009/ah16-3-10-chronic-respiratory-conditions.pdf.aspx</u>.
- 101. Australian Institute of Health and Welfare, Poulos LM, Cooper SJ, Ampon R, Reddel HK and Marks GB 2014. Mortality from asthma and COPD in Australia. Cat. no. ACM 30. Canberra: AIHW. Accessed February 2018.] Available from <u>https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-conditions/mortality-from-asthma-and-copd-in-australia/formats</u>.
- 102. Burgel PR, Escamilla R, Perez T, Carre P, Caillaud D, Chanez P, et al. Impact of comorbidities on COPD-specific health-related quality of life. Respir Med 2013; 107:233-41.
- 103. Vanfleteren LE, Spruit MA, Groenen M, Gaffron S, van Empel VP, Bruijnzeel PL, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187:728-35.
- 104. Agusti A. Systemic effects of chronic obstructive pulmonary disease: what we know and what we don't know (but should). Proc Am Thorac Soc 2007; 4:522-5.
- 105. Australian Institute of Health and Welfare (AIHW) 2014-2015. How does COPD affects quality of life? *Accessed February 2018*.] Available from <u>https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-</u> <u>conditions/copd-chronic-obstructive-pulmonary-disease/contents/how-</u> <u>does-copd-affect-quality-of-life</u>.
- 106. Hogg JC. The pathology of chronic obstructive pulmonary disease. Annual review of pathology 2009; 4:435-59.
- 107. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 2014; 35:71-86.
- 108. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016; 138:16-27.
- 109. Domej W. Oxidative stress and free radicals in COPD: implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 2014; 9:1207-24.
- 110. Johnson SR. Untangling the protease web in COPD: metalloproteinases in the silent zone. Thorax 2016; 71:105-6.
- Ferguson GT. Why does the lung hyperinflate? Proc Am Thorac Soc 2006;
 3:176-9.
- 112. O'Donnell DE, Laveneziana P. The clinical importance of dynamic lung hyperinflation in COPD. COPD 2006; 3:219-32.
- 113. Thomas M, Decramer M, O'Donnell DE. No room to breathe: the importance of lung hyperinflation in COPD. Prim Care Respir J 2013; 22:101-11.

- 114. Garcia-Rio F, Lores V, Mediano O, Rojo B, Hernanz A, Lopez-Collazo E, et al. Daily physical activity in patients with chronic obstructive pulmonary disease is mainly associated with dynamic hyperinflation. Am J Respir Crit Care Med 2009; 180:506-12.
- 115. Agusti A. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 2012; 7.
- 116. Gan WQ, Man SFP, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004; 59:574-80.
- 117. Agusti A, Faner R. Systemic inflammation and comorbidities in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2012; 9:43-6.
- 118. Fletcher CM. Standardised questionnaire on respiratory symptoms: a statement prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis (MRC breathlessness score). British Medical Journal 1960; 2:1662.
- 119. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. The Lancet Respiratory Medicine 2015; 3:435-42.
- 120. Siddiqui SH, Guasconi A, Vestbo J, Jones P, Agusti A, Paggiaro P, et al. Blood Eosinophils: A Biomarker of Response to Extrafine Beclomethasone/Formoterol in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 192:523-5.
- 121. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J 2014; 44:1697-700.
- 122. Brightling CE, McKenna S, Hargadon B, Birring S, Green R, Siva R, et al. Sputum eosinophilia and the short-term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 2005; 60:193-8.
- 123. Brightling CE, Monteiro W, Ward R, Parker D, Morgan MD, Wardlaw AJ, et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2000; 356:1480-5.
- 124. McDonald VM, Higgins I, Wood LG, Gibson PG. Multidimensional assessment and tailored interventions for COPD: respiratory utopia or common sense? Thorax 2013; 68:691-4.
- 125. Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 2010; 376:803-13.
- 126. Alison JA, McKeough ZJ, Johnston K, McNamara RJ, Spencer LM, Jenkins SC, et al. Australian and New Zealand Pulmonary Rehabilitation Guidelines. Respirology 2017; 22:800-19.

- 127. O'Donnell DE, McGuire M, Samis L, Webb KA. General exercise training improves ventilatory and peripheral muscle strength and endurance in chronic airflow limitation. Am J Respir Crit Care Med 1998; 157:1489-97.
- 128. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62.
- 129. McDonnell MJ, Ward C, Lordan JL, Rutherford RM. Non-cystic fibrosis bronchiectasis. Qjm 2013; 106:709-15.
- King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. Characterisation of the onset and presenting clinical features of adult bronchiectasis. Respir Med 2006; 100:2183-9.
- 131. Polverino E, Goeminne PC, McDonnell MJ, Aliberti S, Marshall SE, Loebinger MR, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 50:pii: 1700629.
- 132. Aliberti S, Lonni S, Dore S, McDonnell MJ, Goeminne PC, Dimakou K, et al. Clinical phenotypes in adult patients with bronchiectasis. Eur Respir J 2016; 47:1113-22.
- Chalmers JD, Hill AT. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol Immunol 2013; 55:27-34.
- 134. Shoemark A, Ozerovitch L, Wilson R. Aetiology in adult patients with bronchiectasis. Respir Med 2007; 101:1163-70.
- 135. Seitz AE, Olivier KN, Adjemian J, Holland SM, Prevots DR. Trends in bronchiectasis among medicare beneficiaries in the United States, 2000 to 2007. Chest 2012; 142:432-9.
- 136. Quint JK, Millett ER, Joshi M, Navaratnam V, Thomas SL, Hurst JR, et al. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study. Eur Respir J 2016; 47:186-93.
- 137. Chang AB, Grimwood K, Mulholland EK, Torzillo PJ, Working Group on Indigenous Paediatric Respiratory H. Bronchiectasis in indigenous children in remote Australian communities. Med J Aust 2002; 177:200-4.
- Chang AB, Marsh RL, Upham JW, Hoffman LR, Smith-Vaughan H, Holt D, et al. Toward making inroads in reducing the disparity of lung health in Australian indigenous and new zealand maori children. Front Pediatr 2015; 3:9.
- 139. Twiss J. New Zealand national incidence of bronchiectasis "too high" for a developed country. Arch Dis Child 2005; 90:737-40.
- 140. Ozalp O, Inal-Ince D, Calik E, Vardar-Yagli N, Saglam M, Savci S, et al. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status. Multidiscip Respir Med 2012; 7:3.
- 141. Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, Soler-Cataluna JJ. Quality-of-life determinants in patients with clinically stable bronchiectasis. Chest 2005; 128:739-45.

- 142. Olveira C, Martinez-Garcia MA. Health-related quality of life questionnaires in bronchiectasis: the simplest way to quantify complexity. Eur Respir J 2017; 49:pii: 1700208.
- 143. Stockley RA. Bronchiectasis New Therapeutic Approaches Based on Pathogenesis. Clinics in Chest Medicine 1987; 8:481-94.
- Pathophysiology of bronchiectasis: From Bronchiectasis Toolbox. Accessed February 2018.] Available from <u>http://bronchiectasis.com.au/bronchiectasis/bronchiectasis/pathophysiolog</u> <u>Y</u>.
- 145. Evans D, Greenstone M. Long-term antibiotics in the management of non-CF bronchiectasis do they improve outcome? Resp Med 2003; 97:851-8.
- 146. Stockley RA, Hill SL, Morrison HM, Starkie CM. Elastolytic activity of sputum and its relationship to purulence and to lung function in-patient with bronchiectasis. Thorax 1984; 39:408-13.
- 147. Chang AB, Bell SC, Torzillo PJ, King PT, Maguire GP, Byrnes CA, et al. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand Thoracic Society of Australia and New Zealand guidelines. Med J Aust 2015; 202:21-3.
- 148. Chang AB, Bell SC, Byrnes CA, Grimwood K, Holmes PW, King PT, et al. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand. A position statement from the Thoracic Society of Australia and New Zealand and the Australian Lung Foundation. Med J Aust 2010; 193:356-65.
- 149. Vanfleteren LE, Kocks JW, Stone IS, Breyer-Kohansal R, Greulich T, Lacedonia D, et al. Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms? Thorax 2014; 69:72-9.
- 150. Mortality GBD, Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388:1459-544.
- 151. Jameson JL, Longo DL. Precision medicine personalized, problematic, and promising. . N Engl J Med 2015; 372:2229–34.
- 152. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010; 182:598-604.
- 153. McDonald VM, Simpson JL, Higgins I, Gibson PG. Multidimensional assessment of older people with asthma and COPD: clinical management and health status. Age Ageing 2011; 40:42-9.
- 154. Gibson P, McDonald VM. Phenotyping Asthma and COPD. BRN Rev. 2016; 2:239-52.
- 155. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 1985; 100:126-31.

- 156. Gale NS, Duckers JM, Enright S, Cockcroft JR, Shale DJ, Bolton CE. Does pulmonary rehabilitation address cardiovascular risk factors in patients with COPD? BMC Pulm Med 2011; 11:20.
- 157. Camillo CA, Laburu Vde M, Goncalves NS, Cavalheri V, Tomasi FP, Hernandes NA, et al. Improvement of heart rate variability after exercise training and its predictors in COPD. Respir Med 2011; 105:1054-62.
- 158. Lucas SR, Platts-Mills TAE. Physical activity and exercise in asthma: Relevance to etiology and treatment. Journal of Allergy and Clinical Immunology 2005; 115:928-34.
- 159. World Health Organization, 2004. Resolution WHA57.17. Global Strategy on Diet, Physical Activity and Health. In: Fiftyseventh World Health Assembly, Geneva, 17–22 May 2004. Resolutions and decisions, annexes. Geneva.
- 160. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. The Lancet 2017; 390:2643-54.
- 161. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010. *Accessed July 2018*.] Available from <u>http://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_e</u> <u>ng.pdf;jsessionid=8868AF1FD84B7E46510F47F02AAF7C4E?sequence=1</u>.
- 162. Im L. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380:219-29.
- 163. Owen N, Bauman A, Brown W. Too much sitting: a novel and important predictor of chronic disease risk? Br J Sports Med 2009; 43:81-3.
- 164. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 2009; 41:998-1005.
- 165. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171:972-7.
- 166. Watz H. Physical activity. In: ERS, editor. European Respiratory Monograph: Outcomes in Clinical Trials; 2013. p. 117-26.
- 167. de Roos P, Lucas C, Strijbos JH, van Trijffel E. Effectiveness of a combined exercise training and home-based walking programme on physical activity compared with standard medical care in moderate COPD: a randomised controlled trial. Physiotherapy 2018; 104:116-21.
- 168. Demeyer H, Louvaris Z, Frei A, Rabinovich RA, de Jong C, Gimeno-Santos E, et al. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax 2017; 72:415-23.
- 169. Nolan CM, Maddocks M, Canavan JL, Jones SE, Delogu V, Kaliaraju D, et al. Pedometer Step Count Targets during Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. A Randomized Controlled Trial. Am J Respir Crit Care Med 2017; 195:1344-52.

- 170. Lee AL, Hill CJ, Cecins N, Jenkins S, McDonald CF, Burge AT, et al. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis--a randomised controlled trial. Respir Res 2014; 15:44.
- 171. 2008 Physical Activity Guidelines for Americans. Office of Disease Prevention & Health Promotion, US Department of Health and Human Services, October 2008. Accessed February 2018.] Available from www.health.gov/paguidelines.
- 172. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000; 32:S498-504.
- 173. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990; 13:555-65.
- 174. Government DoHaHSU. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Scientific Report. In: Services DoHaH, ed. Washington, DC. U.S. : Department of Health and Human Services US Government, 2018.
- 175. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 2008; 15:239-46.
- 176. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380:219-29.
- 177. Arem H, Moore SC, Patel A, Hartge P, Berrington de Gonzalez A, Visvanathan K, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med 2015; 175:959-67.
- Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act 2017; 14:75.
- 179. Sadarangani KP, Hamer M, Mindell JS, Coombs NA, Stamatakis E. Physical activity and risk of all-cause and cardiovascular disease mortality in diabetic adults from Great Britain: pooled analysis of 10 population-based cohorts. Diabetes Care 2014; 37:1016-23.
- Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008; 40:181-8.
- 181. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011; 22:7-14.
- 182. Australian Institute of Health and Welfare 2018. Physical activity across the life stages. Cat. no. PHE 225. Canberra: AIHW.

- 183. Clarke TC, Norris T, Schiller JS. Early release of selected estimates based on data from 2016 National Health Interview Survey. National Center for Health Statistics. May 2017. Accessed July 2018. Available from: <u>http://www.cdc.gov/nchs/nhis.htm</u>.
- 184. Bennie JA, Pedisic Z, van Uffelen JG, Gale J, Banting LK, Vergeer I, et al. The descriptive epidemiology of total physical activity, muscle-strengthening exercises and sedentary behaviour among Australian adults--results from the National Nutrition and Physical Activity Survey. BMC Public Health 2016; 16:73.
- 185. Harris CD, Watson KB, Carlson SA, Fulton JE, Dorn JM, Elam-Evans L. Adult Participation in Aerobic and Muscle-Strengthening Physical Activities — United States, 2011. MMWR Morb Mortal Wkly Rep 2013; 62:326–30.
- 186. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007; 39:1423-34.
- 187. Sedentary Behaviour Research N. Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab 2012; 37:540-2.
- 188. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J 2011; 32:590-7.
- 189. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med 2015; 162:123-32.
- 190. van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and allcause mortality risk in 222 497 Australian adults. Arch Intern Med 2012; 172:494-500.
- 191. Ku PW, Steptoe A, Liao Y, Hsueh MC, Chen LJ. A cut-off of daily sedentary time and all-cause mortality in adults: a meta-regression analysis involving more than 1 million participants. BMC Med 2018; 16:74.
- 192. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised metaanalysis of data from more than 1 million men and women. Lancet 2016; 388:1302-13010.
- Australia's Physical Activity and Sedentary Behaviour Guidelines for Adults (18–64 years). Canberra, Australia: Australian Government Department of Health; 2014.
- 194. UK Department of Health. Start Active, Stay Active: A Report on Physical Activity for Health from the Four Home Countries' Chief Medical Officers. London, England: Crown Copyright; 2011.
- 195. Australia's physical activity and sedentary behaviour guidelines for adultss: Make your move – Sit less. Be active for life! Canberra: Australian

Govenrment, Department of Health; 2014. *Accessed February 2018*.] Available from

https://www.health.gov.au/internet/main/publishing.nsf/content/F01F9232 8EDADA5BCA257BF0001E720D/\$File/brochure%20PA%20Guidelines A5 18 -64yrs.PDF.

- 196. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care 2008; 31:661-6.
- 197. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012; 35:976-83.
- 198. Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr 2013; 98:358-66.
- Benatti FB, Ried-Larsen M. The Effects of Breaking up Prolonged Sitting Time: A Review of Experimental Studies. Med Sci Sports Exerc 2015; 47:2053-61.
- 200. Buman MP, Winkler EA, Kurka JM, Hekler EB, Baldwin CM, Owen N, et al. Reallocating Time to Sleep, Sedentary Behaviors, or Active Behaviors: Associations with Cardiovascular Disease Risk Biomarkers, Nhanes 2005-2006. Am J Epidemiol 2014; 179:323-34.
- 201. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol 2008; 167:875-81.
- 202. Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev Med 2012; 54:82-7.
- 203. Australian Bureau of Statistics. July 2013. 4364.0.55.004 Australian Health Survey: Physical Activity, 2011-12. *Accessed February 2018*] Available from <u>http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.004Chapter10</u> 02011-12.
- 204. Dowd KP, Szeklicki R, Minetto MA, Murphy MH, Polito A, Ghigo E, et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act 2018; 15:15.
- 205. Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 2007; 15:2371-79.
- 206. Maddison R, Ni Mhurchu C, Jiang Y, Vander Hoorn S, Rodgers A, Lawes CM, et al. International Physical Activity Questionnaire (IPAQ) and New Zealand Physical Activity Questionnaire (NZPAQ): a doubly labelled water validation. Int J Behav Nutr Phys Act 2007; 4:62.
- 207. Rabinovich RA, Louvaris Z, Raste Y, Langer D, Van Remoortel H, Giavedoni S, et al. Validity of physical activity monitors during daily life in patients with COPD. Eur Respir J 2013; 42:1205-15.

- 208. Melanson EL, Jr., Freedson PS. Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr 1996; 36:385-96.
- 209. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 2011; 43:1561-7.
- 210. Medicine ACoS. ACSM's Guidelines for Exercise Testing and Prescription. 8th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2009.
- 211. Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab 2010; 35:725-40.
- 212. Dishman RK, Washburn RA, Schoeller DA. Measurement of physical activity. Quest 2001; 53:295-309.
- 213. Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 2000; 71 Suppl 2:1-14.
- 214. Hart TL, Ainsworth BE, Tudor-Locke C. Objective and subjective measures of sedentary behavior and physical activity. Med Sci Sports Exerc 2011; 43:449-56.
- 215. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act 2008; 5:56.
- Bonnefoy M, Normand S, Pachiaudi C, Lacour JR, Laville M, Kostka T.
 Simultaneous validation of ten physical activity questionnaires in older men: a doubly labeled water study. J Am Geriatr Soc 2001; 49:28-35.
- 217. Lee IM, Shiroma EJ. Using Accelerometers to Measure Physical Activity in Large-Scale Epidemiological Studies: Issues and Challenges. British Journal of Sports Medicine 2014; 48:197-201.
- 218. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35:1381-95.
- 219. Pereira MA, FitzerGerald SJ, Gregg EW, Joswiak ML, Ryan WJ, Suminski RR, et al. A collection of Physical Activity Questionnaires for health-related research. Med Sci Sports Exerc 1997; 29:S1-205.
- 220. Paffenbarger RS, Jr., Blair SN, Lee IM, Hyde RT. Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc 1993; 25:60-70.
- 221. Sallis JF, Haskell WL, Wood PD, Fortmann SP, Rogers T, Blair SN, et al. Physical activity assessment methodology in the Five-City Project. Am J Epidemiol 1985; 121:91-106.
- 222. Clark BK, Winkler E, Healy GN, Gardiner PG, Dunstan DW, Owen N, et al. Adults' past-day recall of sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc 2013; 45:1198-207.
- 223. Rosenberg DE, Norman GJ, Wagner N, Patrick K, Calfas KJ, Sallis JF. Reliability and validity of the Sedentary Behavior Questionnaire (SBQ) for adults. J Phys Act Health 2010; 7:697-705.

- 224. Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domainspecific sitting: a study of reliability and validity. Med Sci Sports Exerc 2010; 42:1094-102.
- 225. Gardiner PA, Clark BK, Healy GN, Eakin EG, Winkler EA, Owen N. Measuring older adults' sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc 2011; 43:2127-33.
- 226. Tudor-Locke C, Johnson WD, Katzmarzyk PT. U.S. Population Profile of Time-Stamped Accelerometer Outputs: Impact of Wear Time. J Phys Act Health 2011; 8:693-8.
- 227. Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN. Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med 2012; 46:436-42.
- 228. Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best Practices for Using Physical Activity Monitors in Population-Based Research. Medicine and Science in Sports and Exercise 2012; 44:S68-S76.
- 229. Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults' sedentary time in population-based studies. Am J Prev Med 2011; 41:216-27.
- 230. Edwardson CL, Winkler EAH, Bodicoat DH, Yates T, Davies MJ, Dunstan DW, et al. Considerations when using the activPAL monitor in field-based research with adult populations. Journal of Sport and Health Science 2017; 6:162-78.
- 231. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc 2011; 43:357-64.
- 232. What is the difference between the Wear Time Validation algorithms?. *Accessed January 2019*. 2019.] Available from <u>https://actigraphcorp.force.com/support/s/article/What-is-the-difference-between-the-Wear-Time-Validation-algorithms</u>.
- 233. Berendsen BA, Hendriks MR, Willems P, Meijer K, Schaper NC, Savelberg HH. A 20 min window is optimal in a non-wear algorithm for tri-axial thigh-worn accelerometry in overweight people. Physiol Meas 2014; 35:2205-12.
- 234. Hutto B, Howard VJ, Blair SN, Colabianchi N, Vena JE, Rhodes D, et al. Identifying accelerometer nonwear and wear time in older adults. Int J Behav Nutr Phys Act 2013; 10:120.
- 235. Winkler EA, Bodicoat DH, Healy GN, Bakrania K, Yates T, Owen N, et al. Identifying adults' valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol Meas 2016; 37:1653-68.
- 236. Featured Client Projects. *Accessed August 2018*. 2018.] Available from <u>https://actigraphcorp.com/projects/</u>.
- 237. Manns P, Ezeugwu V, Armijo-Olivo S, Vallance J, Healy GN. Accelerometer-Derived Pattern of Sedentary and Physical Activity Time in Persons with Mobility Disability: National Health and Nutrition Examination Survey 2003 to 2006. J Am Geriatr Soc 2015; 63:1314-23.

- 238. Evenson KR, Wen F, Metzger JS, Herring AH. Physical activity and sedentary behavior patterns using accelerometry from a national sample of United States adults. Int J Behav Nutr Phys Act 2015; 12:20.
- 239. Shiroma EJ, Freedson PS, Trost SG, Lee IM. JAMA 2013; 310:2562-3.
- 240. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008; 31:369-71.
- 241. Bakrania K, Edwardson CL, Bodicoat DH, Esliger DW, Gill JM, Kazi A, et al. Associations of mutually exclusive categories of physical activity and sedentary time with markers of cardiometabolic health in English adults: a cross-sectional analysis of the Health Survey for England. BMC Public Health 2016; 16:25.
- 242. Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D, et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012; 7:e39198.
- 243. Santos-Lozano A, Santin-Medeiros F, Cardon G, Torres-Luque G, Bailon R, Bergmeir C, et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med 2013; 34:975-82.
- 244. wGT3X-BT User's manual. Actigraph Corp, 2013. *Accessed August 2018*.] Available from <u>https://www.actigraphcorp.com/support/manuals/wgt3x-gt3x-manual/</u>.
- 245. From ActiGraph Software Department: ActiLife 6 User's Manual. 2012. Pensacola, FL 32502: ActiGraph Software Department] Available from <u>http://actigraphcorp.com/support/manuals/actilife-6-manual/</u>.
- 246. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 1998; 30:777-81.
- 247. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 2011; 14:411-6.
- 248. Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J, et al. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Med Sci Sports Exerc 2017; 49:1935-44.
- 249. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care 2007; 30:1384-9.
- 250. Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc 2004; 36:1259-66.
- 251. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med 2014; 48:1019-23.
- Liu S, Gao RX, Freedson PS. Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc 2012; 44:2138-46.
- 253. Intille SS, Lester J, Sallis JF, Duncan G. New horizons in sensor development. Med Sci Sports Exerc 2012; 44:S24-31.

- 254. Crouter SE, Horton M, Bassett DR. Use of a Two-Regression Model for Estimating Energy Expenditure in Children. Medicine and Science in Sports and Exercise 2012; 44:1177-85.
- 255. Hart TL, McClain JJ, Tudor-Locke C. Controlled and free-living evaluation of objective measures of sedentary and active behaviors. J Phys Act Health 2011; 8:848-57.
- 256. Aguilar-Farias N, Brown WJ, Peeters GM. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport 2014; 17:293-9.
- 257. Gorman E, Hanson HM, Yang PH, Khan KM, Liu-Ambrose T, Ashe MC. Accelerometry analysis of physical activity and sedentary behavior in older adults: a systematic review and data analysis. Eur Rev Aging Phys Act 2014; 11:35-49.
- 258. Reardon JZ, Lareau SC, ZuWallack R. Functional status and quality of life in chronic obstructive pulmonary disease. Am J Med 2006; 119:32-7.
- 259. Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur Respir J 2009; 33:262-72.
- 260. Mesquita R, Nakken N, Janssen DJA, van den Bogaart EHA, Delbressine JML, Essers JMN, et al. Activity Levels and Exercise Motivation in Patients With COPD and Their Resident Loved Ones. Chest 2017; 151:1028-38.
- 261. Eijkemans M, Mommers M, Draaisma JMT, Thijs C, Prins MH. Physical Activity and Asthma: A Systematic Review and Meta-Analysis. PLoS ONE 2012; 7 (12).
- 262. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur Respir J 2006; 27:1040-55.
- 263. Vorrink SN, Kort HS, Troosters T, Lammers JW. Level of daily physical activity in individuals with COPD compared with healthy controls. Respir Res 2011; 12:33.
- 264. Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest 2011; 140:331-42.
- 265. Waschki B, Spruit MA, Watz H, Albert PS, Shrikrishna D, Groenen M, et al. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study. Respir Med 2012; 106:522-30.
- 266. Watz H, Waschki B, Boehme C, Claussen M, Meyer T, Magnussen H. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study. Am J Respir Crit Care Med 2008; 177:743-51.
- 267. Schonhofer B, Ardes P, Geibel M, Kohler D, Jones PW. Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. Eur Respir J 1997; 10:2814-9.
- 268. Steele BG, Belza B, Cain K, Warms C, Coppersmith J, Howard J. Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. J Rehabil Res Dev 2003; 40:45-58.

- 269. Troosters T, Sciurba F, Battaglia S, Langer D, Valluri SR, Martino L, et al. Physical inactivity in patients with COPD, a controlled multi-center pilotstudy. Respir Med 2010; 104:1005-11.
- 270. Saunders T, Campbell N, Jason T, Dechman G, Hernandez P, Thompson K, et al. Objectively Measured Steps/Day in Patients With Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. J Phys Act Health 2016; 13:1275-83.
- 271. Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 2014; 44:1521-37.
- 272. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. Thorax 2006; 61:772-8.
- 273. Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM, et al. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax 2003; 58:100-5.
- 274. Garcia-Rio F, Rojo B, Casitas R, Lores V, Madero R, Romero D, et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD. Chest 2012; 142:338-46.
- 275. Shrikrishna D, Patel M, Tanner RJ, Seymour JM, Connolly BA, Puthucheary ZA, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J 2012; 40:1115-22.
- 276. Garcia-Aymerich J, Felez MA, Escarrabill J, Marrades RM, Morera J, Elosua R, et al. Physical activity and its determinants in severe chronic obstructive pulmonary disease. Med Sci Sports Exerc 2004; 36:1667-73.
- 277. Mantoani LC, Dell'Era S, MacNee W, Rabinovich RA. Physical activity in patients with COPD: the impact of comorbidities. Expert Rev Respir Med 2017; 11:685-98.
- 278. Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest 2009; 136:1039-46.
- 279. Moy ML, Teylan M, Weston NA, Gagnon DR, Danilack VA, Garshick E. Daily step count is associated with plasma C-reactive protein and IL-6 in a US cohort with COPD. Chest 2014; 145:542-50.
- 280. Cavalheri V, Straker L, Gucciardi DF, Gardiner PA, Hill K. Changing physical activity and sedentary behaviour in people with COPD. Respirology 2016; 21:419-26.
- 281. Furlanetto KC, Donaria L, Schneider LP, Lopes JR, Ribeiro M, Fernandes KB, et al. Sedentary Behavior Is an Independent Predictor of Mortality in Subjects With COPD. Respir Care 2017; 62:579-87.
- 282. Hartman JE, Boezen HM, de Greef MH, Ten Hacken NH. Physical and psychosocial factors associated with physical activity in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2013; 94:2396-402 e7.

- 283. Ong HK, Lee AL, Hill CJ, Holland AE, Denehy L. Effects of pulmonary rehabilitation in bronchiectasis: A retrospective study. Chron Respir Dis 2011; 8:21-30.
- 284. Bradley JM, Wilson JJ, Hayes K, Kent L, McDonough S, Tully MA, et al. Sedentary behaviour and physical activity in bronchiectasis: a cross-sectional study. BMC Pulm Med 2015; 15:61.
- 285. Gale NS, Bolton CE, Duckers JM, Enright S, Cockcroft JR, Shale DJ. Systemic comorbidities in bronchiectasis. Chronic Respiratory Disease 2012; 9:231-8.
- 286. de Camargo AA, Amaral TS, Rached SZ, Athanazio RA, Lanza FC, Sampaio LM, et al. Incremental shuttle walking test: a reproducible and valid test to evaluate exercise tolerance in adults with noncystic fibrosis bronchiectasis. Archives of Physical Medicine & Rehabilitation 2014; 95:892-9.
- 287. de Camargo AA, Boldorini JC, Holland AE, de Castro RAS, Lanza FC, Athanazio RA, et al. Determinants of Peripheral Muscle Strength and Activity in Daily Life in People With Bronchiectasis. Phys Ther 2018; 98:153-61.
- 288. Disabella V, Sherman C. Exercise for asthma patients: little risk, big rewards. Phys Sportsmed 1998; 26:75-84.
- 289. Con W, Ka M, Wtb E, G S, Am W, Jy R, et al. Perceptions of asthma and exercise in adolescents with and without asthma. J Asthma 2017:0.
- 290. Cassim R, Koplin JJ, Dharmage SC, Senaratna BC, Lodge CJ, Lowe AJ, et al. The difference in amount of physical activity performed by children with and without asthma: A systematic review and meta-analysis. J Asthma 2016; 53:882-92.
- 291. Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, et al. Physical activity, airway resistance and small airway dysfunction in severe asthma. Eur Respir J 2017; 49:pii: 1601827.
- 292. Bruno A, Uasuf CG, Insalaco G, Barazzoni R, Ballacchino A, Gjomarkaj M, et al. Nutritional status and physical inactivity in moderated asthmatics: A pilot study. Medicine (United States) 2016; 95 (31) (no pagination).
- 293. Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, McDonald VM. Physical Activity and Exercise Capacity in Severe Asthma: Key Clinical Associations. J Allergy Clin Immunol Pract 2018; 6:814-22.
- 294. Moore LE, Bhutani M, Petersen SR, McMurtry MS, Byers BW, Tedjasaputra V, et al. Physical activity, fitness, and vascular health in patients with asthma. J Allergy Clin Immunol 2015; 136:809-11 e3.
- 295. Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy 2013; 43:36-49.
- 296. Van't Hul AJ, Frouws S, Van Den Akker E, Van Lummel R, Starrenburg-Razenberg A, Van Bruggen A, et al. Decreased physical activity in adults with bronchial asthma. Respiratory Medicine 2016; 114:72-7.
- 297. Vermeulen F, Chirumberro A, Rummens P, Bruyneel M, Ninane V. Relationship between the sensation of activity limitation and the results of functional assessment in asthma patients. J Asthma 2017; 54:570-7.

- 298. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6:e1000097.
- 299. Chen Y, Dales R, Krewski D. Leisure-time energy expenditure in asthmatics and non-asthmatics. Respiratory Medicine 2001; 95:13-8.
- 300. Doggett N, Dogra S. Physical inactivity and television-viewing time among Aboriginal adults with asthma: a cross-sectional analysis of the Aboriginal Peoples Survey. Health Promotion and Chronic Disease Prevention in Canada 2015; 35:54-61.
- 301. Dogra S, Baker J, Ardern CI. The role of physical activity and body mass index in the health care use of adults with asthma. Annals of Allergy, Asthma, & Immunology 2009; 102:462-8.
- 302. Dogra S, Meisner BA, Baker J. Psychosocial predictors of physical activity in older aged asthmatics. Age & Ageing 2008; 37:449-54.
- 303. Ford ES, Heath GW, Mannino DM, Redd SC. Leisure-time physical activity patterns among US adults with asthma. Chest 2003; 124:432-7.
- 304. Liang W, Chikritzhs T, Lee AH. Lifestyle of young Australian adults with asthma. Asia Pac J Public Health 2015; 27:NP248-54.
- 305. Malkia E, Impivaara O. Intensity of physical activity and respiratory function in subjects with and without bronchial asthma. Scand J Med Sci Sports 1998; 8:27-32.
- 306. Ramos E, de Oliveira LV, Silva AB, Costa IP, Correa JC, Costa D, et al. Peripheral muscle strength and functional capacity in patients with moderate to severe asthma. Multidiscip Respir Med 2015; 10:3.
- 307. Ritz T, Rosenfield D, Steptoe A. Physical activity, lung function, and shortness of breath in the daily life of individuals with asthma. Chest 2010; 138:913-8.
- 308. Teramoto M, Moonie S. Physical activity participation among adult Nevadans with self-reported asthma. J Asthma 2011; 48:517-22.
- 309. Tsai YS, Lai FC, Chen SR, Jeng C. The influence of physical activity level on heart rate variability among asthmatic adults. J Clin Nurs 2011; 20:111-8.
- 310. Vancampfort D, Koyanagi A, Ward PB, Rosenbaum S, Schuch FB, Mugisha J, et al. Chronic physical conditions, multimorbidity and physical activity across 46 low- and middle-income countries. Int J Behav Nutr Phys Act 2017; 14:6.
- 311. Verlaet A, Moreira A, Sa-Sousa A, Barros R, Santos R, Moreira P, et al.
 Physical activity in adults with controlled and uncontrolled asthma as compared to healthy adults: a cross-sectional study. Clin Transl Allergy 2013; 3:1.
- 312. Yamasaki A, Kawasaki Y, Takeda K, Harada T, Hasegawa Y, Fukushima T, et al. Relationship between Oxidative Stress, Physical Activity, and Vitamin Intake in Patients with Asthma. Yonago Acta Medica 2017; 60:86-93.
- 313. Bacon SL, Lemiere C, Moullec G, Ninot G, Pepin V, Lavoie KL. Association between patterns of leisure time physical activity and asthma control in adult patients. BMJ Open Respiratory Research 2015; 2:1-7.

- 314. Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, et al. Physical activity and lung function decline in adults with asthma: The HUNT Study. Respirology 2017; 22:278-83.
- 315. Dogra S, Baker J. Physical activity and health in Canadian asthmatics. Journal of Asthma 2006; 43:795-9.
- 316. Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjonneland A, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2016; 194:855-65.
- 317. Ford ES, Mannino DM, Redd SC, Moriarty DG, Mokdad AH. Determinants of quality of life among people with asthma: findings from the Behavioral Risk Factor Surveillance System. Journal of Asthma 2004; 41:327-36.
- 318. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med 2007; 175:458-63.
- 319. Garcia-Aymerich J, Varraso R, Anto JM, Camargo CA, Jr. Prospective study of physical activity and risk of asthma exacerbations in older women. Am J Respir Crit Care Med 2009; 179:999-1003.
- 320. Mancuso CA, Choi TN, Westermann H, Briggs WM, Wenderoth S, Charlson ME. Measuring physical activity in asthma patients: two-minute walk test, repeated chair rise test, and self-reported energy expenditure. J Asthma 2007; 44:333-40.
- Russell MA, Janson C, Real FG, Johannessen A, Waatevik M, Benediktsdottir
 B, et al. Physical activity and asthma: A longitudinal and multi-country study.
 J Asthma 2017; 54:938-45.
- 322. Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity, and asthma severity in the general US population. J Asthma 2007; 44:651-8.
- 323. Westermann H, Choi TN, Briggs WM, Charlson ME, Mancuso CA. Obesity and exercise habits of asthmatic patients. Ann Allergy Asthma Immunol 2008; 101:488-94.
- 324. Yawn BP, Rank MA, Bertram SL, Wollan PC. Obesity, low levels of physical activity and smoking present opportunities for primary care asthma interventions: an analysis of baseline data from The Asthma Tools Study. NPJ Prim Care Respir Med 2015; 25:15058.
- 325. Iikura M, Yi S, Ichimura Y, Hori A, Izumi S, Sugiyama H, et al. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet. PLoS One 2013; 8:e68290.
- 326. Barros R, Moreira P, Padrao P, Teixeira VH, Carvalho P, Delgado L, et al. Obesity increases the prevalence and the incidence of asthma and worsens asthma severity. Clinical Nutrition 2017; 36:1068-74.
- 327. Grammatopoulou E, Haniotou A, Douka A, Koutsouki D. Factors associated with BMI in Greek adults with asthma. J Asthma 2010; 47:276-80.

- 328. Ma J, Strub P, Xiao L, Lavori PW, Camargo CA, Jr., Wilson SR, et al. Behavioral weight loss and physical activity intervention in obese adults with asthma. A randomized trial. Ann Am Thorac Soc 2015; 12:1-11.
- 329. Beckett WS, Jacobs Jr DR, Xinhua YU, Iribarren C, Dale Williams O. Asthma is associated with weight gain in females but not males, independent of physical activity. American Journal of Respiratory and Critical Care Medicine 2001; 164:2045-50.
- 330. Zahran HS, Bailey C. Factors associated with asthma prevalence among racial and ethnic groups--United States, 2009-2010 behavioral risk factor surveillance system. J Asthma 2013; 50:583-9.
- 331. Bedard A, Serra I, Dumas O, Basagana X, Clavel-Chapelon F, Le Moual N, et al. Time-Dependent Associations between Body Composition, Physical Activity, and Current Asthma in Women: A Marginal Structural Modeling Analysis. American Journal of Epidemiology 2017; 186:21-8.
- 332. Vogt R, Bersamin A, Ellemberg C, Winkleby MA. Evaluation of risk factors and a community intervention to increase control and treatment of asthma in a low-income semi-rural California community. Journal of Asthma 2008; 45:568-74.
- 333. Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Body mass index and physical activity in relation to asthma and atopic diseases in young adults. Respir Med 2006; 100:1518-25.
- 334. Yiallouros PK, Economou M, Kolokotroni O, Savva SC, Gavatha M, Ioannou P, et al. Gender differences in objectively assessed physical activity in asthmatic and non-asthmatic children. Pediatr Pulmonol 2015; 50:317-26.
- 335. Lovstrom L, Emtner M, Alving K, Nordvall L, Borres MP, Janson C, et al. High levels of physical activity are associated with poorer asthma control in young females but not in males. Respirology 2016; 21:79-87.
- 336. Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child 2007; 92:963-9.
- 337. Martinez-Gonzalez MA, Varo JJ, Santos JL, De Irala J, Gibney M, Kearney J, et al. Prevalence of physical activity during leisure time in the European Union. Med Sci Sports Exerc 2001; 33:1142-6.
- 338. Bauman A, Bull F, Chey T, Craig CL, Ainsworth BE, Sallis JF, et al. The International Prevalence Study on Physical Activity: results from 20 countries. Int J Behav Nutr Phys Act 2009; 6:21.
- Chhabra SK, Chhabra P. Gender differences in perception of dyspnea, assessment of control, and quality of life in asthma. J Asthma 2011; 48:609-15.
- 340. Singh AK, Cydulka RK, Stahmer SA, Woodruff PG, Camargo CA, Jr. Sex differences among adults presenting to the emergency department with acute asthma. Multicenter Asthma Research Collaboration Investigators. Arch Intern Med 1999; 159:1237-43.

- 341. Jerning C, Martinander E, Bjerg A, Ekerljung L, Franklin KA, Jarvholm B, et al. Asthma and physical activity--a population based study results from the Swedish GA(2)LEN survey. Respir Med 2013; 107:1651-8.
- 342. Clark CJ. The Role of Physical Training in Asthma. Chest 1992; 101:293S-8S.
- 343. Pelkonen M, Notkola IL, Lakka T, Tukiainen HO, Kivinen P, Nissinen A. Delaying decline in pulmonary function with physical activity: a 25-year follow-up. Am J Respir Crit Care Med 2003; 168:494-9.
- 344. Jakes RW, Day NE, Patel B, Khaw KT, Oakes S, Luben R, et al. Physical inactivity is associated with lower forced expiratory volume in 1 second European Prospective Investigation into Cancer-Norfolk prospective population study. American Journal of Epidemiology 2002; 156:139-47.
- 345. Chen H, Kuo C. Relationship between respiratory muscle function and age, sex, and other factors. Journal of Applied Physiology 1989; 66:943-8.
- 346. Mancuso CA, Choi TN, Westermann H, Wenderoth S, Wells MT, Charlson ME. Improvement in asthma quality of life in patients enrolled in a prospective study to increase lifestyle physical activity. J Asthma 2013; 50:103-7.
- 347. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009; 41:459-71.
- 348. Carlsen KH, Anderson SD, Bjermer L, Bonini S, Brusasco V, Canonica W, et al. Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN. Allergy 2008; 63:387-403.
- 349. Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015; 2:27984.
- 350. Charlson ME, Boutin-Foster C, Mancuso CA, Peterson JC, Ogedegbe G, Briggs WM, et al. Randomized controlled trials of positive affect and selfaffirmation to facilitate healthy behaviors in patients with cardiopulmonary diseases: rationale, trial design, and methods. Contemporary Clinical Trials 2007; 28:748-62.
- 351. O'Neill S, Sweeney J, Patterson CC, Menzies-Gow A, Niven R, Mansur AH, et al. The cost of treating severe refractory asthma in the UK: an economic analysis from the British Thoracic Society Difficult Asthma Registry. Thorax 2015; 70:376-8.
- 352. McDonald VM, Vertigan AE, Gibson PG. How to set up a severe asthma service. Respirology 2011; 16:900-11.
- 353. WHO. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization, 2009.
- 354. Pate RR, O'Neill JR, Lobelo F. The evolving definition of "sedentary". Exerc Sport Sci Rev 2008; 36:173-8.

- 355. Brown WJ, Bauman A, Bull FC, Burton NW. Development of Evidence-based Physical Activity Recommendations for Adults (18-64 years). Australian Government Department of Health.: Australian Government Department of Health., 2012.
- 356. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One 2013; 8:e80000.
- 357. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40:373-83.
- 358. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67:361-70.
- 359. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J 2014; 44:1428-46.
- 360. Jenkins S, Cecins N, Camarri B, Williams C, Thompson P, Eastwood P. Regression equations to predict 6-minute walk distance in middle-aged and elderly adults. Physiother Theory Pract 2009; 25:516-22.
- 361. Juniper EF. Evaluation of impairment of health-related quality of life in asthma: development of a questionnaire for use in clinical trials. Thorax 1992; 47:76-83.
- 362. Juniper EF, Guyatt G, Willan A, Griffith LE. Determining a minimal important change in a disease-specific quality of life instrument. J Clin Epidemiol. 1994; 47:81-7.
- 363. Juniper EF, Svensson K, Mork AC, Stahl E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir Med 2005; 99:553-8.
- 364. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005; 26:319-38.
- 365. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159:179-87.
- 366. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011; 184:602-15.
- 367. Gibson PG, Wlodarczyk JW, Hensley MJ, Gleeson M, Henry RL, Cripps AW, et al. Epidemiological association of airway inflammation with asthma symptoms and airway hyperresponsiveness in childhood. Am J Respir Crit Care Med 1998; 158:36-41.
- 368. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 1997; 65:1220S-8S; discussion 9S-31S.
- 369. Tudor-Locke C, Bassett Jr DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 2004; 34:1-8.

- 370. Pinto-Plata VM, Cote C, Cabral A, Taylor JA, Celli B. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J 2004; 23:28–33.
- 371. Spruit MA, Polkey MI, Celli B, Edwards LD, Watkins ML, Pinto-Plata V, et al. Predicting outcomes from 6-minute walk distance in chronic obstructive pulmonary disease. J Am Med Dir Assoc 2012; 13:291-7.
- 372. Cote CG, Casanova C, Marin JM, Lopez MV, Pinto-Plata V, de Oca MM, et al. Validation and comparison of reference equations for the 6-min walk distance test. Eur Respir J 2008; 31:571-8.
- 373. Celli B, Tetzlaff K, Criner G, Polkey MI, Sciurba F, Casaburi R, et al. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool. Insights from the COPD Biomarker Qualification Consortium. Am J Respir Crit Care Med 2016; 194:1483-93.
- 374. Polkey MI, Spruit MA, Edwards LD, Watkins ML, Pinto-Plata V, Vestbo J, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med 2013; 187:382-6.
- 375. Scott HA, Latham JR, Callister R, Pretto JJ, Baines K, Saltos N, et al. Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Annals of Allergy, Asthma, & Immunology 2015; 114:470-9.
- 376. Qian FH, Zhang Q, Zhou LF, Liu H, Huang M, Zhang XL, et al. High-sensitivity C-reactive protein: a predicative marker in severe asthma. Respirology 2008; 13:664-9.
- 377. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11:607-15.
- 378. Garcia-Aymerich J, Serra I, Gomez FP, Farrero E, Balcells E, Rodriguez DA, et al. Physical activity and clinical and functional status in COPD. Chest 2009; 136:62-70.
- 379. Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clinical & Experimental Allergy 2013; 43:36-49.
- 380. Troosters T, van der Molen T, Polkey M, Rabinovich RA, Vogiatzis I, Weisman I, et al. Improving physical activity in COPD: towards a new paradigm. Respir Res 2013; 14:115.
- 381. Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A Systematic Review of Associations of Physical Activity and Sedentary Time with Asthma Outcomes. J Allergy Clin Immunol Pract 2018; pii: S2213-2198(18)30127-2.
- 382. Jones PW, Quirk FH, Baveystock CM. The St George's Respiratory Questionnaire. Respir Med 1991; 85 Suppl B:25-31; discussion 3-7.
- 383. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity

index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350:1005-12.

- 384. Chanez P, Holz O, Ind PW, Djukanović R, Maestrelli P, Sterk PJ. Sputum induction. Eur Respir J 2002; 20:3s-8s.
- 385. Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J 2014; 44:1447-78.
- 386. West JB. The major limitation to exercise performance in COPD is inadequate energy supply to the respiratory and locomotor muscles vs. lower limb muscle dysfunction vs. dynamic hyperinflation. Defining 'dynamic hyperinflation'. J Appl Physiol (1985) 2008; 105:758.
- 387. Hill AT, Haworth CS, Aliberti S, Barker A, Blasi F, Boersma W, et al. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J 2017; 49:pii: 1700051.
- 388. Chalmers JD, Aliberti S, Blasi F. Management of bronchiectasis in adults. Eur Respir J 2015; 45:1446-62.
- 389. Chalmers JD, Goeminne P, Aliberti S, McDonnell MJ, Lonni S, Davidson J, et al. The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med 2014; 189:576-85.
- 390. Dudgeon EK, Crichton M, Chalmers JD. "The missing ingredient": the patient perspective of health related quality of life in bronchiectasis: a qualitative study. BMC Pulm Med 2018; 18:81.
- 391. Pavord ID. Mepolizumab, quality of life, and severe eosinophilic asthma. Lancet Respir Med 2017; 5:362-3.
- 392. Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008; 31:416-69.
- 393. Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. Respirology 2018:Epub date: 2018/11/02. Doi: 10.1111/resp.13428.
- 394. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis 1992; 145:1321-7.
- 395. Jones P. Interpreting thresholds for a clinically significant change in health status in asthma and COPD. European Respiratory Journal 2002; 19:398-404.
- 396. Baumgartner RN, Koehler DN, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am J Epidemiol 1998; 147:755-63.
- 397. Summary Meeting Report. Brussels, Belgium, 5-7 May 2004. WHO Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. Accessed February 2018.] Available from <u>http://www.who.int/chp/topics/Osteoporosis.pdf</u>.

- 398. Dogra S, Jamnik V, Baker J. Self-directed exercise improves perceived measures of health in adults with partly controlled asthma. Journal of Asthma 2010; 47:972-7.
- 399. Villa F, Castro AP, Pastorino AC, Santarem JM, Martins MA, Jacob CM, et al. Aerobic capacity and skeletal muscle function in children with asthma. Arch Dis Child 2011; 96:554-9.
- 400. Wilson CB, Jones PW, O'Leary CJ, Hansell DM, Dowling RB, Cole PJ, et al. Systemic markers of inflammation in stable bronchiectasis. Eur Respir J 1998; 12:820-4.
- 401. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoidinduced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45:2163-72.
- 402. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103:1813-8.
- 403. Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006; 61:17-22.
- 404. Olveira C, Olveira G, Gaspar I, Dorado A, Cruz I, Soriguer F, et al. Depression and anxiety symptoms in bronchiectasis: associations with health-related quality of life. Qual Life Res 2013; 22:597-605.
- 405. Yorke J, Adair P, Doyle AM, Dubrow-Marshall L, Fleming S, Holmes L, et al. A randomised controlled feasibility trial of Group Cognitive Behavioural Therapy for people with severe asthma. J Asthma 2017; 54:543-54.
- 406. King MT, Kenny PM, Marks GB. Measures of asthma control and quality of life: longitudinal data provide practical insights into their relative usefulness in different research contexts. Qual Life Res 2009; 18:301-12.
- 407. Vermeulen F, Garcia G, Ninane V, Laveneziana P. Activity limitation and exertional dyspnea in adult asthmatic patients: What do we know? Respiratory Medicine 2016; 117:122-30.
- 408. Gibson PG, McDonald VM. Asthma-COPD overlap 2015: now we are six. Thorax 2015; 70:683-91.
- 409. Moonie S, Hogan MB. Challenges for the Clinician: Physical Activity Among Severe Asthmatic Patients with Comorbid Obesity. J Allergy Clin Immunol Pract 2018; 6:823-4.
- 410. Holland AE, Wadell K, Spruit MA. How to adapt the pulmonary rehabilitation programme to patients with chronic respiratory disease other than COPD. Eur Respir Rev 2013; 22:577-86.
- 411. van der Meer AN, Pasma H, Kempenaar-Okkema W, Pelinck JA, Schutten M, Storm H, et al. A 1-day visit in a severe asthma centre: effect on asthma control, quality of life and healthcare use. Eur Respir J 2016; 48:726-33.

APPENDIX I: CHAPTER 2 - PUBLISHED ARTICLE

Original Article

A Systematic Review of Associations of Physical Activity and Sedentary Time with Asthma Outcomes

Laura Cordova-Rivera, BPhty(Hons)^{a,b,c}, Peter G. Gibson, MBBS^{a,b,c,d}, Paul A. Gardiner, PhD^{a,f}, and Vanessa M. McDonald, PhD^{a,b,c,d} Newcastle, New South Wales; and Woolloongabba, South Brisbane, Queensland, Australia

What is already known about this topic? Compared with controls, subjectively measured physical activity seems to be reduced in adults with asthma. Higher levels of physical activity might have a beneficial impact on asthma.

What does this article add to our knowledge? Physical activity is reduced in adults with asthma, especially in females and older people with asthma. Sedentary time did not differ between people with and without asthma. Higher levels of activity are associated with better asthma outcomes.

How does this study impact current management guidelines? These results suggest that addressing inactivity and sedentary time may be a potential nonpharmacological approach in the management of asthma. Disease severity, sex, and age should guide these approaches.

BACKGROUND: Physical inactivity and high sedentary time are associated with adverse health outcomes in several diseases. However, their impact in asthma is less clear.

OBJECTIVE: We aimed to synthesize the literature characterizing physical activity and sedentary time in adults with asthma, to estimate activity levels using meta-analysis, and to evaluate associations between physical activity and sedentary time and the clinical and physiological characteristics of asthma. METHODS: Articles written in English and addressing the measurement of physical activity or sedentary time in adults ≥18 years old with asthma were identified using 4 electronic databases. Meta-analysis was used to estimate steps/day in applicable studies.

RESULTS: There were 42 studies that met the indusion criteria. Physical activity in asthma was lower compared with controls. The pooled mean (95% confidence interval) steps/day for people with asthma was 8390 (7361, 9419). Physical activity tended to be lower in females compared with males, and in older people with asthma compared with their younger counterparts. Higher levels of physical activity were associated with better measures of lung function, disease control, health status, and health care use. Measures of sedentary time were scarce, and indicated a similar engagement in this behavior between participants with asthma and controls. High sedentary time was associated with higher health care use, and poorer lung function, asthma control, and exercise capacity. CONCLUSIONS: People with asthma engage in lower levels of physical activity compared with controls. Higher levels of physical activity may positively impact on asthma clinical outcomes. Sedentary time should be more widely assessed. © 2018 American Academy of Allergy, Asthma & Immunology (J Allergy Clin Immunol Pract 2018; ■: ■- ■)

Key words: Asthma; Physical activity; Sedentary time; Accelerometry; Questionnaire; Associations; Clinical outcomes; Metaanalysis

Asthma is an obstructive airway disease that causes symptoms of dyspnea, wheezing, and chest tightness. These symptoms, and the fear of provoking exercise-induced bronchoconstriction (EIB), may have a negative impact on the engagement in physical activity in people with asthma.¹⁻³

[&]quot;National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, New South Wales, Australia

^bPriority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia

^cHunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
^dDepartment of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia

⁶Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia

^fMater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia

This research was supported by a University of Newcastle and Priority Research Centre for Healthy Lungs postgraduate scholarship.

Conflicts of interest: P.G. Gibson holds an National Health and Medical Research Council (NHMRC) Practitioner Fellowship; has participated in educational symposia funded by AstraZeneca, Boehringer Ingelheim, GlavoSmithKline, and Novaris; and has participated in studies funded by GlavoSmithKline and AstraZeneca. V. M. McDonald is supported by an NHMRC Translating Research Into Practice fellowship; has participated in educational symposia funded by GlavoSmithKline, Astra-Zeneca, Menarini, and Novaris; and has participated in advisory boards for GlavoSmithKline, AstraZeneca, and Menarini. P. A. Gardiner is supported by an NHMRC-Australian Research Council Dementia Research Development Fellowship and has participated in an educational symposium funded by Boehringer Ingelheim. L. Cardova-Rivera declares that she has no relevant conflicts of interest.

Received for publication December 9, 2017; revised February 5, 2018; accepted for publication February 22, 2018.

Available online

Corresponding author: Vanessa M. McDonald, PhD, Hunter Medical Research Institute, Level 2 West Wing, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia. E-mail: vanessa.mcdonald@newcastle.edu.au, 2213-2198

^{© 2018} American Academy of Allergy, Asthma & Immunology

https://doi.org/10.1016/j.jaip.2018.02.027

Abbreviat	ions used
BMI-B	ody mass index
CI-C	onfidence interval
COPD-C	hronic obstructive pulmonary disease
EE-E	nergy expenditure
EIB-E.	vercise-induced bronchoconstriction
WVPA-M	oderate and vigorous physical activity
OR-O	dds ratio
RCT-R	andomized control trial
SE-St	andard error

Physical activity and sedentary time have been widdy studied in the general population⁴ and in chronic obstructive pulmonary disease (COPD). People with COPD are considerably less active and more sedentary than people without respiratory conditions.^{5,6} Furthermore, inactivity in COPD is associated with more exacerbations resulting in hospitalization,⁷ a reduced time to readmission,⁸ and increased all-cause mortality.⁸⁻¹⁰ As a result, there are well-established exercise programs for people with COPD that seek to address physical inactivity.^{11,12} In asthma, however, the role of physical activity and sedentary time is less clear,¹³ and thus guidelines and interventions to target these behaviors in this population are limited.

In a prior systematic review in adults and children, Eijkemans et al14 suggested that people engaging in higher levels of physical activity might have a lower risk of asthma incidence. In adults with asthma, they also found a trend toward lower levels of physical activity compared with controls.¹⁴ However, none of the included studies used objective measures (accelerometry) to quantify physical activity in adults, and sedentary time was not addressed. Another review found that children and adolescents with and without asthma engage in a similar amount of objec-tively measured physical activity.¹⁵ Despite this evidence, there are no reviews of the literature that have evaluated the prevalence of sedentary time in adults with asthma, nor reviewed the use of accelerometry to quantify physical activity and sedentary time in this population. In addition, the degree to which the level of physical activity and sedentary time impact on the airway symptoms or clinical outcomes in adults with asthma has not been reviewed.

Our aim therefore is to update and synthesize the evidence in relation to the prevalence of physical activity and sedentary time in adults with asthma. We conducted a meta-analysis of studies reporting steps/day in people with asthma, and sought to evaluate the associations of these behaviors with the clinical and physiological characteristics of the disease.

METHODS

Literature search

Articles written in English and addressing the measurement of physical activity or sedentary time in adults (\geq 18 years) with asthma were identified by a comprehensive search using the Medline, Embase, PEDro, and Cochrane databases. The search was conducted in April 2017, and updated in October 2017, and included all articles published until the search date.

Eligible studies were those that examined the prevalence and patterns of these behaviors in asthma populations, or studies analyzing the association of these behaviors with clinical or biological markers of the disease. We did not include a filter for study design. Details of the search strategy are provided in Table I.

J ALLERGY	CLIN	IMMUNOL	PRACT
		MONT	H 2018

TABLE	•	erms	search	1

```
Search strategy: (#1) AND (#2 OR #3)
```

- #1 Asthma* or wheez* or "bronchoconstriction"
- #2 "physical activity" or ("physical exercise" or "exercise") or "walking" or "motor activity"
- #3 ("sedentary behaviour" OR "sedentary behavior" OR "sedentary time") OR ("sedentary lifestyle") OR ("internet time") OR ("computer time") OR ("television watching" OR "television viewing" OR "television time") OR ("TV watching" OR "TV viewing" OR "TV time") OR ("screen time") OR "sitting time" OR "reading time"

Analysis

Statistical analysis was performed using STATA 13 (Stata Corp., College Station, Tex). The continuous outcome (mean steps/day) from relevant studies¹⁶⁻²² was pooled using the random-effect model. Authors of 3 studies were contacted, and provided further details of their results.^{16,20,21}

RESULTS

The initial search yielded 2803 references. A flow diagram²³ of the literature search is provided in Figure 1.

We identified 42 eligible studies investigating physical activity and/or sedentary time in adults with asthma. Population characteristics are presented in Table II. From these studies, 18 compared the level of these behaviors in asthma with a control group. ^{16-19,21,27,28,30-32,37,39,41,42,4447} Table III summarizes the physical activity measurements utilized in these 18 studies. Three studies^{20,22,50} without a control group were also included in Table III to provide further details of the activity monitors used. Associations with disease characteristics were assessed in 24 studies^{16-18,21,22,24,28,29,31,33,35,39,40,42,43,47,49-51,53-57}

(Table IV). In addition, 2 studies reported physical activity as a confounder of body mass index (BMI),^{26,34} and 2 studies reported physical activity before a randomized controlled trial (RCT) exercise intervention.^{20,38} In 5 studies, the association between current asthma and different levels of physical activity was assessed.^{25,26,48,52,58} In general, the studies were quite heterogeneous in terms of the population and assessments of activity/sedentary time. Studies included 193,821 participants with asthma and 1,417,540 controls. Most participants were women, and in 31% of the studies, the mean age was below 45 years. Twenty-three studies used a self-reported asthma diagnosis.^{25,35,36,37,39,43,44,648,52,53,55,58} Disease severity or level of control was reported in 15 studies, and populations included people with mild, moderate, and severe asthma. ^{16-18,20-22,26,34,38,40-42,47,49,56}

Prevalence of physical activity

Among studies using a control group, eleven^{16-18,21,28,30,32,39,41,44,46} (asthma sample = 32,606) reported less physical activity in asthma, and six reported no difference^{19,31,37,42,46,47} (asthma sample = 7,824). One study²⁷ (asthma sample size = 1,070) reported increased physical activity in younger adults with asthma (<40 years old), but decreased physical activity in older participants (>50 years old).

physical activity in older participants (>50 years old). Activity monitors were used in 8 studies.^{16-22,50} Five of them included a control group^{16-19,21} (Tables III and V). A metaanalysis (Figure 2) found that the weighted mean (95%)

FIGURE 1. PRISMA Flow Diagram Literature search. Updated October 31, 2017.

confidence interval [CI]) number of steps/day for people with asthma was 8390 (7361, 9419). In the 4 studies that compared the volume and/or intensity of activity, people with asthma tended to accumulate less physical activity than controls (Table V).

Some studies reported an effect of age and sex on activity in asthma. Three studies reported that the decrease in activity in

people with asthma was mostly seen in older participants (\geq 50 years old).^{27,32,46} For instance, despite their overall results showing that people with asthma were more inactive than controls, Ford et al³² did not find statistically significant differences in the association between activity and asthma status in people under the age of 60. Some studies reported that males with asthma presented higher levels of activity than females with

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

TABLE II. Demographic characteristics of studies included

			Asthma participants				Controls			
Cross-sectional studies	Country	n	Female (%)	Age	Current smoking (%)	Disease severity (%)	n	Female (%)	Age	
Bacon et al 2015 ²⁴	Canada	643	60	53.4 ± 15.4	8.7	n/r	n/a	n/a	n/a	
Bahmer et al 2017 ¹⁶	Germany	146	51 severe 53 mild to mo	55.5 xd. 48.1	22 24	43.1 56.8	29	38	42.1	
*Beckett et al 200125	USA	4,547	52	18 to 30	41.1	n/r	4131	55.2	18 to 30	
Barros et al 2017 ²⁶	Portugal	2,578	62	20 to >85	21.4	Current: 44 Persist: 38 Severe:18	30,066	52.4	20 to >85	
Bruno et al 201617	Italy	24	66	38.5 ± 14.2	n/r	Mild to mod.	18	55	43.1 ± 14.3	
Chen et al 200127	Canada	1,070	61.7	12 to >70	26.7	n/r	15,743	55	12 to >70	
Cordova-Rivera et al 201718	Australia	61	52.5	59 (43 to 68)	6.6	Severe	61	52.5	54 (34 to 63)	
Doggett and Dogra 201528	Canada	1,830	69.2	20 to >55	33.1	n/r	18,978	54.4	20 to >55	
Dogra and Baker 200629	Canada	11,243	62	40 to 44	n/r	n/r	n/a	n/a	n/a	
Dogra et al 2008 ³⁰	Canada	1,772† 3,123‡	63† 68‡	45 to 79	n/r	n/r	19,864	57	65 to 79	
Dogra et al 2009 ³¹	Canada	6,835	62	20 to 64	28.5	n/r	78,051	51	20 to 64	
Ford et al 200332	USA	12,489	64	18 to >70	n/r	n/r	147,742	48.9	18 to >70	
Ford et al 200433	USA	12,111	63.7	44.2 (0.3)	26	n/r	n/a	n/a	n/a	
Grammatopoulou et al 2010 ³⁴	Greece	100	79	n/r	20	Mild: 58 Mod:32 Severe: 10	n/a	n/a	n/a	
likura et al 201335	Japan	437	53.3	64 (51 to 74)	7.1	n/r	n/a	n/a	n/a	
Kilpelainen et al 200636	Finland	10,023	61	18 to 25	3.4§	n/r	n/a	n/a	n/a	
Liang et al 201537	Australia	723	51§	18 to 29	2.7	n/r	1,891	51§	18 to 29	
Ma et al 201638	USA	330	10.6	47.6 ± 12.4	5.8	UA	n/a	n/a	n/a	
Malkia and Impivaara 199839	Finland	178	59	30 to 89	n/r	n/r	7,015	30 to 89	n/r	
Mancuso et al 200740	USA	258	75	42 ± 12	11	Mild to mod	n/a	n/a	n/a	
Moore et al 2015 ¹⁹	Canada	16	38	27.8 ± 6.1	n/r	n/r	16	50	26.6 ± 5.2	
Ramos et al 201541	Brazil	20	70	44 ± 6.0	n/r	Mod to severe	15	93	39 ± 6.0	
Ritz et al 201042	USA	20	70	28 ± 6.8	n/r	Mod	20	70	31.6 ± 5.9	
Scott et al 2013 ²⁰	Australia	14	78.6	43.3 (37 to 7.8)	30.8	Mild inter: 8 Mild persist:2: Mod: 54 Severe: 15	n/a	n/a	n/a	
Strine et al 200743	USA	11,962	65.5	18 to >75	23.6	n/r	n/a	n/a	n/a	
Teramoto and Moonie 201144	USA	880	57.2	18 to >70	n/r	n/r	2,960	n/r	18 to >70	
Tsai et al 2011 ⁴⁵	Taiwan	27	44	60.8 ± 10.2	11	n/r	27	37	56.8 ± 1.1	
Vancampfort et al 201746	LMICs	11,857	50.8§	18 to >65	n/r	n/r	216,167	50.8§	n/a	
Van't Hul et al 2016 ²¹	The Netherla	ands 226	62	47.3 ± 15.3	n∕r	CA:17 PC:18 UA: 65	201	75.6	42.3 ± 16.3	
Verlaet et al 201347	Portugal	CA:125 UA:78	53 85	43 ± 28 54 ± 21.5	33	61.6 38.4	606	50.5	53 ± 24	
Vermeulen et al 2016 ²²	Belgium	20	65	39.0 ± 11.9	n⁄r	CA: 10 PC: 10 UA: 80	n/a	n/a	n/a	
Vogt et al 200848	USA	311	72.3	18 to > 75	n/r	n/r	4,420	n/a	n/a	
Westermann et al 200849	USA	258	75.9	42 ± 12	n/r	Mild to mod	n/a	n/a	n/a	
Yamasaki et al 201750	Japan	18	55.6	63 ± 11	0	n/r	n/a	n/a	n/a	
Yawn et al 2015 ⁵¹	USA	533	76	40.6	15.4	n∕r	n/a	n/a	n/a	
Zahran and Bailey 2013 ⁵²	USA	74,779	76	18 to >65	19.5	n/r	869,519	51.3	18 to 65+	
Longitudinal studies	Country	Follow-up	n Fe	emale (%) Ag	Cu smok	rrent C ing (%) sev	verity (%)	n	Female (%) Age	
Bedard et al 201758	France	Up to 11 v	15,353	100 59.2 ±	6.3	8.5 n/r		n/a	n/a p/a	
Brumpton et al 201753	Norway	Mean 11.6	1.329	51.6 44.1 +	12.9 2	5.1 n/r		p/a	n/a n/a	
			-10-20		-					

(continued)

J ALLERGY CLIN IMMUNOL PRACT VOLUME . NUMBER

TABLE II. (Continued)

Longitudinal studies	Country	Follow-up	n	Female (%)	Age	Current smoking (%)	Disease severity (%)	n	Female (%)	Age
Fisher et al 201654	Denmark	Mean 16 y	1,347	61.8	57.1 ± 4.5	34.9	n∕r	n/a	n/a	n/a
Garcia-Aymerich et al 200755	Denmark	Mean 11 y	153	n/r	52.4 ± 11.6	n/r	n/r	n/a	n/a	n/a
Garcia-Aymerich et al 2009 ⁵⁶	USA	Mean 2 y	2,818	100	62.7 ± 6.9	5.8	Mild inter: 20.3 Mild persist:35.6 Mod: 34.6 Severe: 9.5	n/a	n/a	n/a
Russell et al 2017 ⁵⁷	Norway	Mean 10 y	209 947	n∕r n∕r¶	n∕r n∕r¶	n/r n/r¶	n/r n/r¶	n/a	n/a	n/a

CA, Controlled asthma; Inter, intermittent; IQR, interquartile range; LMIC, low- and medium-income country; Mod, moderate asthma; n/a, not assessed; n/r, not reported; PC, partially controlled; Persist, persistent; UA, uncontrolled asthm

Age reported as mean ± SD or (SE), or median (IQR), or range. *Cross-sectional data from a longitudinal cohort.

Values for older adults.

Values for middle-aged adults §% reported for the whole sample

Only participants with asthma at baseline.

Results reported correspond to cross-sectional data.

asthma or their healthy counterparts. 39,47,49,51 Furthermore, 2 studies demonstrated that the decrease in activity that develops in older people with asthma occurs earlier, or exclusively, in females than males.^{27,30} Dogra et al,³⁰ for instance, found that the levels of physical activity between middle-aged and older males with asthma were similar, whereas older females with asthma were considerably less active than their younger counterparts.

Reduced physical activity in people with asthma

From the 11 studies reporting lower levels of physical activity in people with asthma compared with controls, 16-18, 21, 28, 30, 32, 39, 41, 44, 46 4 studies used activity monitors.^{16-18,21} Van't Hul et al²¹ found that people with asthma spent significantly less time walking, engaging in vigorous physical activity, and accumulated less steps/day than controls. Cordova-Rivera et al¹⁸ reported that in participants with severe asthma, steps/day and moderate and vigorous physical activity (MVPA) were reduced by 31.4% and 47.5%, respectively, compared with controls ($\dot{P} < .001$ both results).

From the studies using questionnaires, Teramoto and Moonie⁴⁴ reported that control participants spent an additional 60 minutes/week engaged in moderate physical activity and 67 minutes/week in vigorous activity compared with the asthma group (P < .001). Ford et al³² reported that people with current asthma were more inactive (asthma = 30.9%, never asthma = 27.8%; P < .001) and engaged in less vigorous physical activity (asthma = 12.7%, never asthma = 14.8%; P < .001) than people without a history of asthma. Vancampfort et al⁴⁶ reported that asthma was significantly associated with low physical activity (engaging in <150 minutes/week of MVPA), especially in people >50 years old (odds ratio [OR] [95% CI] 1.67 [1.33-2.10]; P < .0001).

The level of activity decreased with loss of asthma control,²¹ and increasing asthma severity.^{16,17} Bahmer et al¹⁶ reported that both steps/day and the time spent in MVPA in participants with severe asthma were reduced by 21% and 17%, respectively, compared with participants with less severe disease (P < .05).

Maintained physical activity in people with asthma

In 6 studies, there were no consistent differences in the level of the activity between the asthma and control

groups. 19,31,37,42,45,47 One study used an activity monitor. 19 Verlaet et al47 found that the proportion of participants performing MVPA was similar among people with controlled and uncontrolled asthma compared with controls; 32%, 38.5%, and 33.7% (P > .05) for each group, respectively. Liang et al37 reported that the prevalence ratio (95% CI) for young adults with asthma (<30 years old) engaging in physical activity at the recommended level was 1.09 (0.92, 1.28) compared with those without asthma.

Increased physical activity in people with asthma

Chen et al²⁷ found that younger adults with asthma achieved higher levels of activity compared with their age-matched healthy counterparts, whereas this pattern of activity reversed in the older age group, especially in females. The mean (standard error [SE]) energy expenditure (EE) for men in the 25-39 years age group with asthma versus their control group was 2.16 (0.22) compared with 1.72 (0.15) kcal/kg/day; and 1.60 (0.14) versus 1.28 (0.06) kcal/kg/day in the female asthma group compared with female controls (P = .02 for both). At the age of 40, this trend started to reverse, becoming statistically significant in women >55 years, and for both sexes in the ≥70 years group. In the ≥70 years age group, males with asthma reported a mean (SE) EE of 0.72 (0.34) versus age-matched controls 1.45 (0.15) kcal/kg/day, whereas females reported a mean of 0.79 (0.17) versus 1.17 (0.07) kcal/kg/day ($P \leq .02$ both results).

Prevalence of sedentary time

Sedentary time was reported by 4 studies.^{18,21,28,47} Two used an activity monitor.^{18,21} Van't Hul et al²¹ reported that participants with asthma spent more time lying down compared with controls (hours/day mean difference [95% CI] 0.59 [0.15, 1.03]; P < .01), but less time sitting than controls (P > .05). Similarly, another study did not find a significant difference in sedentary time between people with severe asthma and controls (minutes/ day mean ± SD 674.4 ± 71 vs 676.2 ± 65, respectively; P > .05).¹⁸ Doggett and Dogra²⁸ reported that the time spent watching TV for more than 10 hours/week was 50.4% in the asthma population compared with 42.9% in the nonasthma group (P < .05).

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

TABLE III. Physical activity measurements in studies with a control group

tudies using questionnaires							
Study	Asthma definition	PA or ST measurement	PA or ST domain	Recall period	Outcome		
Chen et al 200127	Self-reported asthma diagnosed by a health professional	PA questionnaire from National Population Health Survey Canada	LTPA	12 mo	Mean daily energy expenditure (EE) (kcal/ kg/day)		
Doggett and Dogra 2015 ²⁸	Self-reported physician- diagnosed asthma and use of asthma medication	Questionnaire	LTPA Television-viewing time (TVT)	PA: 1 wk TVT: typical week in last 3 mo	PA: frequency and intensity of (measured as an increase of heart rate and breathing) TVT: >10 h/wk as high TVT; <10 h/wk as low TVT		
Dogra et al 2008 ³⁰	Self-reported physician- diagnosed asthma	Questionnaire from CCHS cycle 2.1	LTPA	n/r	Active (≥1.5 kcal/kg/ day), inactive (<1.5 kcal/kg/day) (estimated from EE)		
Dogra et al 2009 ³¹	Self-reported physician- diagnosed asthma	From CCHS cycle 3.1	LTPA	n/r	Active (>3.0 kcalkg/ day), "moderately active" (1.5-3.0 kcal/ kg/day), "inactive" (<1.5 kcal/kg/day)		
Ford et al 2003 ³²	Self-reported physician- diagnosed asthma	Questionnaire from 2000 BRFSS	LTPA	1 mo	Frequency and duration EE/week, and PA Index		
Liang et al 2015 ³⁷	Self-reported asthma	Questionnaire from Australian National Health Survey 2007-08	PA	1 wk	Intensity and frequency ≥800 MET: meeting PA guidelines		
Malkia and Impivaara 1998 ³⁹	Self-reported physician- diagnosed asthma and spirometry	Questionnaire	LTPA, PA at work and during commuting	n/r	Intensity and frequency METs at work and spare time. PA during commuting		
Ramos et al 2015 ⁴¹	Asthma diagnosed by a physician	IPAQ-short form	LTPA	Average day in the last week	PA from EE + duration (METs min/wk)		
Ritz et al 2010 ⁴²	Asthma diagnosed by a physician	Electronic diary	PA in the past 30 min	3 times/d for 21 d	Frequency and intensity		
Teramoto and Moonie 2011 ⁴⁴	Self-reported current or lifetime asthma diagnosed by a health professional	Questionnaire from 2009 Nevada BRFSS	LTPA	1 mo	Engagement on PA, meet PA guidelines min/wk of MVPA		
Tsai et al 2011 ⁴⁵	Asthma diagnosed by a physician	Stanford 7-Day Physical Activity Recall	LTPA	l wk	Frequency and intensity METs		
Vancampfort et al 2017 ⁴⁶	Self-reported lifetime diagnosis of asthma	Extract from IPAQ	LTPA	l wk	Volume of MVPA (<150 min/wk = low PA)		
Verlact et al 201347	Self-reported asthma	IPAQ-short form	LTPA Daily sitting time	Average day in the last week	LTPA: MET min/wk Volume of daily sitting		

Studies using activity m	tudies using activity monitors							
Study	Asthma definition	measurement	domain	Wear-time protocol	Outcome			
Bahmer et al 2017 ¹⁶	Physician-diagnosed asthma, and in specialist care for >3 mo	SenseWear Pro Armband	Total PA	Wom for 1 wk Inclusion: ≥5 d of 22.5 h	Steps/d Average minutes of at least moderate activity/ day (EE>3 METs)			
Bruno et al 2016 ¹⁷	Recruited according the ATS criteria	SenseWear Armband	Total PA	Wom over triceps area for 4 d, 24 h/d (excluded water-based activities) Inclusion: n/r	PA level (min/d); active EE (kcal/d); steps/d; total EE (kcal/d)			

(continued)

J ALLERGY CLIN IMMUNOL PRACT VOLUME ■, NUMBER ■

CORDOVA-RIVERA ET AL 7

TABLE III. (Continued)	
------------------------	--

Studies using activity mon	litors				
Study	Asthma definition	PA or ST measurement	PA or ST domain	Wear-time protocol	Outcome
Cordova-Rivera et al 2017 ¹⁸	Asthma diagnosed by a respiratory physician according to GINA guidelines	ActiGraph wGT3X-BT	Sedentary time Total PA	Wom on dominant hip for 14 consecutive days, 24 h/d (sleeping and nonwear time excluded)	Min/d of: sedentary time, light PA and moderate and vigorous and very vigorous PA Steps/d
Moore et al 2015 ¹⁹	History of asthma and any of the following: positive spirometry, positive methacholine challenge, ≥10% decrease in FEV ₁ after an exercise challenge	SenseWear Pro3 Armband	Total PA	Wom over triceps area of dominant arm for 3 d, 24 h/d Inclusion: preferably 2 wk/d, 1 weekend day	Steps/d Energy expenditure
*Scott et al 2013 ²⁰	Physician-diagnosed asthma, and history of airway hyperresponsiveness	Pedometer	Steps	Wom for 7 d, recording steps a diary, (prior randomization)	Steps/d
Van't Hul et al 2016 ²¹	Asthma diagnosed by a respiratory physician and use of asthma medication	DynaPort MoveMonitor	Total PA Sitting and lying time	Wom on lower lumbar spine for 7 consecutive days, 24 h/d (excluded water-based activities) Inclusion: ≥ 2 (PA) and ≥ 5 (lying) days of ≥ 22.5 h	H/d in walking, sitting, and lying. Steps/d D PA level (total EE/d): >1.70 active, 1.40-1.69 predominantly sedentary, <1.40 very inactive
*Vermeulen et al 2016 ²²	Previous asthma diagnosis, asthma exacerbation	SenseWear Armband	Total PA	Wom for 7 d Inclusion: n/r	Steps/d, % of time at an intensity: < 3 METs, 3- 6 METs, 6-9 METs and ≥ 9 METs
*Yamasaki et al 2017 ⁵⁰	Asthma diagnosed by a respiratory physician	Actiwatch 2	Total PA	Wom for 7 d Inclusion: n/r	Activity counts

BRFSS, Behavioral risk factor surveillance system; CCHS, Canada community health survey; EE, energy expenditure; GINA, Global Initiative for Asthma; IPAQ, International physical activity; activity

*These studies did not have a control group, but were included in this table to provide further details of the activity monitors used.

Associations between physical activity or sedentary time and asthma health outcomes

Twenty-seven studies reported associations between the level of activity and asthma health outcomes. Five were longitudinal.⁵³⁻⁵⁷ Associations with sedentary time were addressed in 3 studies.^{18,28,47} Table IV reports the main findings of these studies. Further descriptions of these associations are summarized in this article's Online Repository at www.jaci-inpractice.org.

The relationship between physical activity and lung function was assessed in 10 studies.^{16-18,21,39,40,42,50,53,55} Weak but significant associations were reported in 8 studies,^{16-18,39,42,50,53,55} from which 2 were of longitudinal design.^{53,55} Measures of asthma control or asthma-related health status were reported in 13 studies, 12 of them of cross-sectional design.^{18,21,22,24,29,33,35,40,42,47,49,51,57} Most of the studies found a positive association between higher physical activity and better clinical outcomes, although in some studies, these associations were attenuated to the null when BMI was included as a confounder.^{24,49,51,57} For instance, in their longitudinal analysis, Russell et al⁵⁷ reported that the protective effect found for light physical activity on current asthma (defined as reporting asthma symptoms, taking asthma medication, or having an asthma exacerbation in the last 12 months) was no longer significant after adjusting for BMI. Vigorous physical activity was associated with more asthma symptoms in 3 studies. ^{42,47,57}

Measures of health care utilization were evaluated in 6 studies.^{28,31,43,51,54,56} Less physical activity was associated with increased exacerbation and/or higher health care utilization in 4 of them.^{28,31,43,56} However, contradicting results were reported in the 2 longitudinal cohorts.^{54,56} Positive associations between measures of exercise capacity and physical activity were reported in 2 cross-sectional studies.^{18,40} Higher physical activity (steps/ day) was associated with lower systemic inflammation (highsensitivity C-reactive protein) in one study.¹⁸ No significant associations were found between physical activity and measures of eosinophilic airway inflammation.¹⁸

Higher levels of sedentary time were associated with worse asthma clinical outcomes in 2 cross-sectional studies.^{18,28} In one of them, these associations were no longer significant after adjustment for physical activity.¹⁸ Doggett and Dogra²⁸ reported an increased OR (95% CI) for general practitioner (GP) consultations, 2.59 (2.34, 2.87), and hospitalizations in the past year, 1.95 (1.82, 2.08), and past 5 years, 1.13 (1.07, 1.18) (P < .001 for all results) for adults with asthma who reported >10 hours of television time/week compared with those who reported ≤ 10 hours.

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

TABLE IV. Association between physical activity and sedentary time with asthma outcomes

Citation	Outcome measures	Conclusions			
Bacon et al 2015 ²⁴	PA, ACQ, and AQLQ	Participants engaging in high levels of PA (20.1 ± 8.9 METs h/wk) were nearly 2.5 times more likely to have good control (ACQ ≤ 0.8) compared with inactive patients (AOR [95% CI] 2.47 [1.06-5.73]). Results for AQLQ were not significant			
*Bahmer et al 2017 ¹⁶	Steps, spirometry, body plethysmography, impulse oscillometry	Decreased PA in asthma is associated with airway resistance and small airway dysfunction, but not with airway limitation			
Brumpton et al 201653	PA, lung function decline	Less decline in FEV ₁ /FVC in active participants with asthma than inactive participants with asthma (FEV ₁ /FVC [%]: -0.14 [-0.27, -0.01] [P = .03])			
*Bruno et al 2016 ¹⁷	PA, FEV ₁ /FVC, fat free mass (FFT) and intracellular water (ICW)	PA positively correlated with FEV ₁ /FVC (Rho = 0.34 [$P < .05$])			
*Cordova-Rivera et al 2017 ¹⁸	ST, MVPA, Steps, 6MWD, spirometry, ACQ, AQLQ, hs-CRP, FeNO, sputum cosinophilia	Higher levels of PA and lower levels of ST were positively associated with most of the clinical/ biological outcomes, especially for steps and exercise capacity (coeff [95% CI] 0.02 [0.00 to 0.04]; P < .01) and systemic inflammation, and MVPA and ACQ (coeff [95% CI] -1.94 [-3.69 to -0.18]; P = .032)			
Doggett and Dogra 2015 ²⁸	ST (TV time), PA, health care use	High levels of TV time associated with: more consultations (AOR [95% CI] 2.59 [2.34-2.87]), hospital stays in the last year (AOR 1.95 [1.82, 2.08]), and in the past 5 years (AOR = 1.13 [1.07, 1.18]) Insufficient PA associated with higher health care use: hospital stays in the past year (AOR 1.16 [1.08, 1.23]) or past 5 years (AOR 1.22 [1.16, 1.28])			
Dogra and Baker 2006 ²⁹	PA (EE), self-reported measures of health	Higher PA associated with better self-reported health outcomes			
Dogra et al 2009 ³¹	PA (EE), health care use	Lower PA levels associated with higher health care use in people with asthma: overnight hospital stays (AOR [95% CI] 1.78 [1.31, 2.41]); ≥3 GP consultations (AOR 1.26 [1.03, 1.55])			
Fisher et al 2016 ⁵⁴	PA, asthma readmission	No association between PA and asthma hospital readmissions in people with asthma			
Ford et al 2004 ³³	PA, QoL	Physical inactivity (compared with VPA) significant independent predictor of impaired QoL: poor or fair health OR (95% CI) 2.36 (1.72, 3.22); >14 d with activity limitation: 2.76 (1.89, 4.02); >14 d physically or mentally limited: 1.90 (1.59, 2.32)			
Garcia-Aymerich et al 2009 ⁵⁶	PA (METs h/wk), asthma exacerbation	Higher levels of PA associated with a lower risk of asthma exacerbation			
Garcia-Aymerich et al 2007 ⁵⁵	Levels of PA, lung function decline	MVPA in participants with asthma improved lung function decline by gaining 10 and 7 mL/y of FEV ₁ and FVC, respectively, compared with the low PA group (significance not reported)			
likura et al 2013 ³⁵	PA and asthma control test (ACT)	In MVRA, periodical PA (>3 METs h/wk) was significantly associated with better asthma outcome (coefficient = 0.152, P = .002)			
Mancuso et al 2007 ⁴⁰	PA (EE), 2MWT, CRT, asthma control (ACQ), severity, and lung function (spirometry)	PA positively correlated with physical performance in both test (2MWT Rho = 0.38; CRT Rho= -0.39) In MVRA, better asthma control associated with more EE from walking, but not with total EE. FEV ₁ associated with PA only in SLRA			
Malkia and Impivaara 1998 ³⁹	PA intensity (METs), lung function (spirometry)	Weak but significant positive correlations of PA intensity and lung function in men only (Rho FEV ₁ = 0.26; PEF = 0.35)			
Ritz et al 2010 ⁴²	PA intensity, lung function (spirometry), SOB, social activity, inhaler use	Higher PA levels associated with higher PEF, higher FEV ₁ in the moming and evening only, and more SOB			

(continued)

J ALLERGY CLIN IMMUNOL PRACT VOLUME , NUMBER CORDOVA-RIVERA ET AL 9

TABLE IV. (Continued)		
Citation	Outcome measures	Conclusions
Russell et al 2016 ⁵⁷	PA with follow-up current asthma (CA) and asthma symptoms (AS)	LPA ≥3 times/wk at baseline associated with less follow-up CA (OR [95% CI] 0.44 [0.22, 0.89]). Result attenuated by BMI. Result for VPA > 0.05 Asthma participants with normal BMI show a significant reduction of AS associated with PA, whereas the overweight and obese category did not
Strine et al 200743	Inactivity and measures of asthma severity	People with asthma who were inactive had significantly poorer control compared with those who were not: >3 ER/y (AOR [95% CI]:2.4 [1.6, 3.6]); GP visit/year (AOR: 1.5 [1.1, 2.0]); absenteeism >2 wk/y: (AOR: 1.7 [1.3, 2.0]); daily symptoms (AOR: 2.5 [1.9, 3.4]); inhaler 30+ times/mo (AOR: 1.9 [1.5, 2.5])
*Van't Hul et al 2016 ²¹	PA, ACQ, AQLQ, and lung function (spirometry)	Low PA was correlated with poorer asthma control. No correlation between spirometry and PA (value not reported). Nil reference regarding AQOL
*Vermeulen et al 201622	Steps/d, activity limitation (ACQ question 3)	No correlation found between PA and activity limitation
Verlaet et al 2013 ⁴⁷	PA or daily sitting time (ST), and asthma control (CARAT Questionnaire)	MPA and ST predictor of controlled asthma in men: AOR (95% CI) 1.84 (1.02, 3.30); OR: 1.87 (1.06, 3.28), respectively, VPA doubled the risk of uncontrolled asthma in women: AOR: 1.94 (1.13-3.35)
Westermann et al 2008 ⁴⁹	Exercise habits, asthma severity, and asthma control (ACQ)	Higher BMI was more closely associated with exercise habits than were asthma control and severity, after adjusting for demographic variables
Yamasaki et al 2017 ⁵⁰	PA, measures of oxidative stress, and antioxidants in blood, spirometry, FeNO, serum levels of vitamins, dietary vitamin intake	Significant correlations only for PA (activity counts/minute) and FEV ₁ /FVC
Yawn et al 2015 ⁵¹	Volume and intensity of PA, asthma control (APGAR), exacerbations	Low PA associated with asthma control only in SLRA

2MWT, 2-min walk test; 6MWD, 6-min walk distance; ACQ, asthma control questionnaire; AHR, adjusted hazards ratios; AOR, adjusted odd ratio; AQLQ, asthma quality of life questionnaire; BMI, body mass index; CL, confidence interval; CRT, chair raise test; EE, energy expenditure; ER, emergency room; FEV₄, forced expiratory volume in the first second; FeNO, fraction of exhaled nitric oxide; FVC, forced vital capacity; GP, general practitioner; hs-CRP, high-sensitivity C-reactive protein; LPA, light PA; LTPA, leisuretime PA; MET, metabolic equivalent task; MVPA, moderate and vigorous PA; MVRA, multi-variable regression analysis; OR, odds ratio; PA, physical activity; PAL, physical activity; PAL, physical activity level; QoL, quality of life; RM, repetition maximum; SLRA, simple linear regression analysis; SOB, shortness of breath; ST, sedentary time; Steps, average steps/day; VPA, vigorous PA.

*Studies using activity monitors.

DISCUSSION

This review summarizes the literature in relation to the prevalence of physical activity and sedentary time in people with asthma, and the associations between these behaviors and different disease outcomes. We found that people with asthma undertake less physical activity than people without asthma, and that the level of activity in asthma seems to be influenced by age, sex, and disease severity.

We also found that people with asthma average 8390 steps/ day. This is almost double the value observed in COPD, where an average of 4579 steps/day were reported (FEV₁% < 50% in 55% of studies included).⁵⁹ This suggests that although physical activity may be reduced in asthma, the degree of reduction is not as severe as in COPD. Nevertheless, there are subgroups in the asthma population where physical activity is lower.^{16,18,21} The 2 studies including people with severe asthma reported a median of around 5800 steps/day.^{16,18} Therefore, the estimate of 8390 steps may not be a value applicable to more severe populations. However, considering that this is the first meta-analysis of steps performed in adults with asthma, and that the objective measurement of physical activity in asthma is a fairly recent topic, this value provides a reference that can be updated and developed with future studies.

We found that physical activity seems to be influenced by sex. Several studies reported better activity outcomes in men with asthma compared with women. Similar findings have been reported in children with asthma compared with controls, suggesting that lower levels of activity are only present in women.^{60,61} In the general population, it has also been found that both girls⁶² and adult females^{63,64} do less activity than their male counterparts. However, the fact that the decline in activity in middle-aged and older people with asthma is seen earlier in women^{27,30} may suggest that the disease consequences are more severe or have a greater impact on health in females. Supporting this observation is evidence suggesting that among people with similar asthma severity, women tend to have poorer self-reported measures of asthma control and health status⁶⁵ and are twice as likely to be admitted to hospital because of acute asthma.⁶⁶ From a societal perspective, this sex difference could also be due to changes in physical activity after retirement, with women retiring at an earlier age.3

We also identified a potential effect of age on the level of physical activity, showing that the decrease in activity is more pronounced, or even exclusive, in the older asthma population.^{27,32,37,46} This is in line with evidence that younger people with asthma engaged in similar¹⁵ or higher^{61,67} levels of activity

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

		s	teps per day	Volume/intensity of PA or sedentary time (min * or h†/d)				
	N	Asthma	Controls	P value		Asthma	Controls	P value
Bahmer et al 2017 ¹⁶	SA: 63 MA: 83 C: 29	SA: 6,174 (4,822-9,277) MA: 7,841 (6,534-10,252)	8,912 (6,800-11,127)	<.001	MVPA*	SA: 125 (68-172) MA: 151 (99-197)	163 (110-207)	<.05‡
Bruno et al 2016 ¹⁷	A: 24 C: 18	10,434 ± 3,813	$10,860 \pm 3,042$	>.05	PA AEE: 33	: 69.7 ± 84.2 5 (380)§ kcal/d	93.2 ± 101 486.7 (435)	.04 .04
Cordova-Rivera et al 2017 ¹⁸	SA: 61 C: 61	5,362 (3,999-7,817)	7,817 (6,072-10,014)	.0002	ST* LPA* MVPA*	674.4 ± 71 193 ± 57.5 21.9 (12.8-37.9)	676.2 ± 65 171 ± 50.6 41.7 (29.3, 65.8)	>.05 .029 <.0001
Moore et al 2015 ¹⁹	A: 16 C: 16	11,125 ± 5,487	10,711 ± 2,675	>.05		n/a	n/a	
Scott et al 201320	A: 33	8,341 ± 3,377	n/a			n/a	n/a	
Van't Hul et al 2016 ²¹	A: 226 C: 201	7,593 (7,155-8,030)	8,795 (8,326-9,263)	.001	Sitting† PAL: 1 LPA†: MPA†: VPA†: 0	: 8.21 (7.95-8.48) .53 (1.51-1.55) 1.7 (1.65-1.88) 1.66 (1.58-1.74) 0.34 (0.30-0.38)	8.6 (8.29-8.86) 1.57 (1.55-1.59) 1.91 (1.80-2.02) 1.64 (1.55-11.7) 0.45 (0.41-0.49)	>.05 .034 >.05 >.05 <.001
Vermeulen et al 2016 ²²	A: 20	10,159 ± 3,751	n/a		MET 0 MET 3-6	-3 (% time): 87.2 (% time): 12.07	n/a	
Yamasaki et al 2017 ⁵⁰	A: 18	n/a	n/a		*Activity of	counts: 283.3 ± 81.1	n/a	

TABLE V. Activity outcomes from activity monitors

Results expressed as mean \pm standard deviation or median (IQR). Statistically significant results are in bold (P < .05).

A, Asthma; AEE, active energy expenditure; C, controls; IQR, interquartile range; kcal, kilocalories; LPA, light physical activity; MA, mild to moderate asthma; MET 0-3, metabolic equivalent task of light PA; MET 3-6, metabolic equivalent task of moderate PA; MPA, moderate PA; MVPA, moderate and vigorous physical activity PA/day; n/a, not assessed; PA, physical activity; PAL, physical activity level; SA, severe asthma; ST, sedentary time; VPA, vigorous PA.
*Reported as min/d.

†Reported as h/d.

P value for the whole asthma sample compared with healthy control.

§Reported as median (IQR) by the authors.

FIGURE 2. Forest plot of standardized mean (95% CI) for steps/day. Authors Bahmer et al, Scott et al, and Van't Hul et al were contacted, and they provided the mean and standard deviation of their results.

compared with their age-matched controls. Plausible biological reasons could relate to the age-related changes in the lung leading to an increased work of breathing that are more extreme in people suffering from respiratory morbidity. Furthermore, older people with asthma are likely to have a longer duration of disease, and therefore, may have more airway remodeling resulting in incomplete reversibility of airflow limitation.⁶⁸ It is also worth mentioning that in the last 30 years, there has been a growing body of evidence that supports the adherence to exercise in people with asthma. This contradicts previous beliefs that people with asthma should avoid exercise and physical activity.⁶⁹ It is likely that the age effect identified in this review is linked to this paradigm shift. Finally, people more than 50 years of age with obstructive airway disease show a high degree of overlap in features of both asthma and COPD,⁶⁸ so it is possible that the activity levels of older people with asthma could be similar to that of COPD populations,^{5,6,59} a finding that requires further investigation and may focus on physical activity interventions to an older age group.

In terms of the associations with physical activity, there was a trend showing that higher physical activity was modestly associated with better lung function in people with asthma. In 2 longitudinal studies, a trend toward a slower lung function decline in active people with asthma compared with inactive people was reported. 53.55 Studies carried out in the general population 70,71 have suggested that this positive impact may be due to the counteracting effect that physical activity may have on the agerelated chest wall stiffening,⁷⁰ or to a potential positive impact on inspiratory muscle endurance.⁷² Among the cross-sectional studies, the results were less consistent. Interestingly, in 2 of the studies reporting a positive association between spirometric values and physical activity, 17,42 participants were relatively young (mean age <39 years), with moderate disease severity, whereas studies in severe or uncontrolled asthma population did not find an association.^{16,21} A systematic review of RCTs of physical training in asthma73 concluded that exercise was not significantly associated with spirometric parameters. Similarly, in COPD, spirometric values have shown a weak-to-moderate association with physical activity.⁷⁴ Bahmer et al¹⁶ reported that airway resistance and small airway dysfunction were better markers of physical activity than spirometric values in moderate and severe asthma participants. Whether the association between airflow limitation and physical activity is modulated by time since diagnosis or disease severity needs further investigation.

Some studies reported a positive association between physical activity and asthma control^{18,21,24,35,47} or health status,^{18,33} which is in line with studies reporting the beneficial impact of exercise protocols on these clinical outcomes.75-78 In some studies, however, the strength of these associations was attenuated to the null when confounders such as BMI were included, 24,49,51,57 which suggests that the association between obesity and asthma control is stronger than the association between activity and asthma control. Studies addressing the relationship between current or incident asthma, BMI, and physical activity have shown similar results.^{25,58} Nevertheless, another study found that the association between asthma control and MVPA was still significant after adjusting for BMI, among other confounders.18 This suggests that MVPA may still have a modest but independent positive effect on asthma control, in addition to its important role in weight management.⁷⁹ Some authors also found an increase in asthma symptoms due to engagement in vigorous physical activity. 42,47,57 Similar findings have been previously reported, especially in females.^{61,67} A link between strenuous exercises (a component of vigorous physical activity) and the development of EIB or exercise-induced asthma symptoms has been well documented in the literature.^{80,81} In

CORDOVA-RIVERA ET AL 11

very low levels of activity (inactivity) and vigorous activity are associated with higher risk of asthma symptoms, whereas exercise carried out at a moderate level shows a protective effect.⁸¹

In terms of the association with asthma exacerbation and health care use, Garcia-Aymerich et al56 found a longitudinal dose-related protective effect of physical activity on risk of hospital admission for asthma exacerbation. Fisher et al⁵⁴ did not observe a significant association between activity engagement and risk of readmission in people with asthma. However, they observed the same pattern in the COPD population, and attributed this lack of association to the small number of participants with asthma and COPD at baseline. Longitudinal studies in COPD have found that physical inactivity is strongly related to acute exacerbations resulting in hospitalization, reduced length of time until admission for an exacerbation, and increased all-cause mortality.7-10 The body of evidence for asthma is considerably less, and unlike studies conducted in COPD,^{9,10} very few have relied on objective physical activity measures to assess the associations of this behavior with disease outcomes.

Data on exercise capacity were scarce,^{18,40} but the available evidence suggests that physical activity, especially steps, is positively associated with functional exercise capacity. Interestingly, a weaker effect was observed for MVPA that may suggest that the biggest benefits are obtained by engaging in light to moderate, but more continuous physical activity, rather than shorter but intense periods.¹⁸ Exercise training in patients with asthma can improve cardiopulmonary fitness, assessed by the direct oxygen consumption,73 and exercise capacity measured by the 6-minute walk distance improves immediately after a 6-week exercise program (3 weekly supervised sessions of walking training and strength exercises) and at 3 months' follow-up.77 In an RCT, improvement in aerobic capacity and weight loss were independently associated with improvements in asthma control.82 This highlights the potential benefit of promoting physical activity as a way to improve different impairments in asthma, which despite of being assessed as different clinical outcomes, still affect the person in multiple dimensions of the disease.

Fewer studies have examined sedentary time in asthma. Both studies using activity monitors did not find significant differences between people with asthma and controls,^{18,21} but both groups were highly sedentary. A third study28 reported that people with asthma had higher time watching television than controls. However, in this study, a self-reported proxy of sedentary time was used. Higher sedentary time was associated with decreased exercise capacity, lung function, and asthma control,18 but these associations were attenuated to the null when physical activity was included as a confounder. This suggests that the deleterious effect of sedentary time may be overcome when engaging in some physical activity. Nevertheless, promoting frequent and longer breaks of sedentary time may be a more achievable goal than increasing activity levels in people with obstructive airway disease. In COPD, there are data linking objectively measured sedentary behavior as an independent predictor of mortality.⁸⁴ Studies measuring sedentary time with postural-based accelerometers⁸⁵ are required to explore to what extent sedentary time is occurring in asthma and whether it is associated with poorer asthma outcomes.

Strength and limitations

This review followed a structured search protocol and used several electronic databases. Since the review of Eijkemans et al,¹⁴

there have been a growing number of studies addressing the prevalence of physical activity in asthma. In addition, the use of activity monitors in asthma is a relatively new topic, and was not addressed in the previous review. Our review also adds to the literature summarizing the evidence of the impact of physical activity on different asthma outcomes. Furthermore, to our knowledge, there is no review reporting measures of sedentary time in people with asthma. However, there are some limitations that need to be considered. Our analysis was restricted to studies published in English, and thus we may have missed literature published in other languages. In addition, because we only included studies conducted in adults, these results should not be generalized to children. In terms of the studies included, there was a great deal of heterogeneity in the clinical asthma and activity outcomes measures, as well as population characteristics. Furthermore, most of the studies were of cross-sectional design. Therefore, reverse causation of the associations reported must be considered as a possibility. Finally, most of the studies were performed either in mild or moderate asthma populations, or severity was not reported. As such, the severe asthma population may be underrepresented in this review, but this highlights the need for further research in this more complex population. Nevertheless, this review provides a complete update of prevalence and associations of these 2 behaviors in people with asthma and provides insight of the gaps in the literature that need to be addressed in future studies.

CONCLUSIONS

People with asthma appear to engage in lower levels of physical activity compared with controls. Disease outcomes seem to improve as the volume or intensity of physical activity increase. However, studies that use objective measures of activity, participants with asthma diagnosed according to guidelines,1 and more standardized measures of clinical asthma outcomes are needed. Also, further studies addressing sedentary time in asthma might help to understand whether this behavior is present, and to what extent it is associated with poorer asthma outcomes. Specifics subgroups, such as those more than 50 years old, and those with severe asthma are underresearched, and an understanding of how age and severity interact in the relationship between activity and asthma clinical or biological outcomes is needed. Longitudinal studies and RCTs exploring the direction of the relationships between physical activity and asthma outcomes are also needed to improve the consistency of the evidence. The results of this review strongly support the need to undertake this research.

REFERENCES

- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2017. Available from: www.ginasthma.org. Accessed June 14, 2017.
- Disabella V, Sherman C. Exercise for asthma patients: little risk, big rewards. Phys Sportsmed 1998;26:75-84.
- Winn CON, Mackintosh KA, Eddolls WTB, Stratton G, Wilson AM, Rance JY, et al. Perceptions of asthma and exercise in adolescents with and without asthma. J Asthma 2012;1-9.
- Lear SA, Hu W, Rangarajan S, Gasévic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130000 neonle from

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

- Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM, et al. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax 2008;58:100-5.
- Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. Thorax 2006;61:772-8.
- Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest 2011;140:331-42.
- Garcia-Rio F, Rojo B, Casitas R, Lores V, Madero R, Romero D, et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD. Chest 2012;142:338-46.
- Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013;188:e13-64.
- Alison JA, McKeough ZJ, Johnston K, McNamara RJ, Spencer LM, Jenkins SC, et al, Australian and New Zealand Pulmonary Rehabilitation Guidelines. Respirology 2017;22:800-19.
- Watz H. Physical Activity. In: Kolb M, Vogelmeier CF, Welle T, editors. Outcomes in Clinical Trials. European Respiratory Monograph 62. Sheffield, United Kingdom: European Respiratory Society; 2013, p. 117-26.
- Eijkemans M, Mommers M, Draaisma JMT, Thijs C, Prins MH. Physical activity and asthma: a systematic review and meta-analysis. PLoS One 2012;7:e50775.
- Cassim R, Koplin JJ, Dharmage SC, Senanatna BC, Lodge CJ, Lowe AJ, et al. The difference in amount of physical activity performed by children with and without asthma: a systematic review and meta-analysis. J Asthma 2016;53: 882-92.
- Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, et al. Physical activity, airway resistance and small airway dysfunction in severe asthma. Eur Respir J 2017;49:1601827. https://doi.org/10.1183/13993003.01827-2016.
- Bruno A, Uasuf CG, Insalaco G, Barazzoni R, Ballacchino A, Gjomarkaj M, et al, Nutritional status and physical inactivity in moderated asthrmatics: a pilot study. Medicine (United States) 2016;95:e4485.
- Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, McDonald VM. Physical activity and exercise capacity in severe asthma: key clinical associations. J Allergy Clin Immunol Pract 2018;6:814-22.
- Moore LE, Bhutani M, Petersen SR, McMurtry MS, Byers BW, Tedjasaputra V, et al. Physical activity, fitness, and vascular health in patients with asthma. J Allergy Clin Immunol 2015;136:809-811.e3.
- Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy 2013;43: 36-49.
- Van't Hul AJ, Frouws S, Van Den Akker E, Van Lummel R, Starrenburg-Razenberg A, Van Bruggen A, et al. Decreased physical activity in adults with bronchial asthma, Respiratory Medicine 2016;114:72-7.
- Vermeulen F, Chirumberro A, Rummens P, Bruyneel M, Ninane V. Relationship between the sensation of activity limitation and the results of functional assessment in asthma patients. J Asthma 2017;54:570-7.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med 2009 5:e1000097.
- Bacon SL, Lemiere C, Moullec G, Ninot G, Pepin V, Lavoie KL. Association between patterns of leisure time physical activity and asthma control in adult patients. BMJ Open Respir Res 2015;2:1-7.
- Beckett WS, Jacobs DR Jr, Xinhua YU, Iribarren C, Dale Williams O. Asthma is associated with weight gain in females but not males, independent of physical activity. Am J Respir Crit Care Med 2001;164:2045-50.
- Barros R, Moreira P, Padrao P, Teixeira VH, Carvalho P, Delgado L, et al. Obesity increases the prevalence and the incidence of asthma and worsens asthma severity. Clin Nutr 2017;36:1068-74.
- Chen Y, Dales R, Kæwski D. Leisure-time energy expenditure in asthmatics and non-asthmatics. Respiratory Medicine 2001;95:13-8.
- Doggett N, Dogra S, Physical inactivity and television-viewing time among Aboriginal adults with asthma: a cross-sectional analysis of the Aboriginal Peoples Survey, Health Promot Chronic Dis Prev Can 2015;35:54-61.
J ALLERGY CLIN IMMUNOL PRACT VOLUME ■, NUMBER ■

- Ford ES, Heath GW, Mannino DM, Redd SC. Leisure-time physical activity patterns among US adults with asthma. Chest 2003;124:432-7.
- Ford ES, Mannino DM, Redd SC, Moriarty DG, Mokdad AH. Determinants of quality of life among people with asthma: findings from the Behavioral Risk Factor Surveillance System. J Asthma 2004;41:327-36.
- Grammatopoulou E, Haniotou A, Douka A, Koutsouki D. Factors associated with BMI in Greek adults with asthma. J Asthma 2010;47:276-80.
- Fikura M, Yi S, Ichimura Y, Hori A, Izumi S, Sugiyama H, et al. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet. PLoS One 2013;8:e68290.
- Kilpelainen M, Terho EO, Helenius H, Koskenvuo M, Body mass index and physical activity in relation to asthma and atopic diseases in young adults, Respir Med 2006;100:1518-25.
- Liang W, Chikritzhs T, Lee AH. Lifestyle of young Australian adults with asthma. Asia Pac J Public Health 2015;27:NP248-54.
- Ma J, Strub P, Xiao L, Lavori PW, Camargo CA Jr, Wilson SR, et al. Behavioral weight loss and physical activity intervention in obese adults with asthma. A randomized trial. Ann Am Thorac Soc 2015;12:1-11.
- Malkia E, Impivaara O. Intensity of physical activity and respiratory function in subjects with and without bronchial asthma. Scand J Med Sci Sports 1998;8: 27-32.
- Mancuso CA, Choi TN, Westermann H, Briggs WM, Wenderoth S, Charlson ME, Measuring physical activity in asthma patients: two-minute walk test, repeated chair rise test, and self-reported energy expenditure. J Asthma 2007;44:333-40.
- Ramos E, de Oliveira LV, Silva AB, Costa IP, Correa JC, Costa D, et al. Peripheral muscle strength and functional capacity in patients with moderate to severe asthma. Multidiscip Respir Med 2015;10:3.
- Ritz T, Rosenfield D, Steptoe A. Physical activity, lung function, and shortness of breath in the daily life of individuals with asthmu. Chest 2010;138:913-8.
- Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity, and asthma severity in the general US population. J Asthma 2007;44:651-8.
- Teramoto M, Moonie S, Physical activity participation among adult Nevadans with self-reported asthma. J Asthma 2011;48:517-22.
- Tsai YS, Lai FC, Chen SR, Jeng C, The influence of physical activity level on heart rate variability among asthmatic adults. J Clin Nurs 2011;20:111-8.
- Vancampfort D, Koyanagi A, Ward PB, Rosenbaum S, Schuch FB, Mugisha J, et al. Chronic physical conditions, multimorbidity and physical activity across 46 low- and middle-income countries. Int J Behav Nutr Phys Act 2017;14:6.
- Verlaet A, Moreira A, Sa-Sousa A, Barros R, Santos R, Moreira P, et al. Physical activity in adults with controlled and uncontrolled asthma as compared to healthy adults: a cross-sectional study. Clin Transl Allergy 2013;3:1.
- Vogt R, Bersamin A, Ellemberg C, Winkleby MA. Evaluation of risk factors and a community intervention to increase control and treatment of asthma in a low-income semi-rural California community. J Asthma 2008;45:568-74.
- Westermann H, Choi TN, Briggs WM, Charlson ME, Mancuso CA. Obesity and exercise habits of asthmatic patients. Ann Allergy Asthma Immunol 2008; 101:488-94.
- Yamasaki A, Kawasaki Y, Takeda K, Harada T, Hasegawa Y, Fukushima T, et al. Relationship between oxidative stress, physical activity, and vitamin intake in patients with asthma. Yonago Acta Medica 2017;60:86-93.
- Yawn BP, Rank MA, Bertram SL, Wollan PC, Obesity, low levels of physical activity and smoking present opportunities for primary care asthma interventions; an analysis of baseline data from The Asthma Tools Study. NPJ Prim Care Respir Med 2015;25:15058.
- Zahran HS, Bailey C. Factors associated with asthma prevalence among racial and ethnic groups—United States, 2009–2010 behavioral risk factor surveillance system. J Asthma 2013;50:583-9.
- Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, et al. Physical activity and lung function decline in adults with asthma: The HUNT Study. Respirology 2017;22:278-83.
- 54. Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjonneland A, et al. Physical activity, air pollution, and the risk of asthrna and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2016;194: 006226

56. Garcia-Aymerich J, Varraso R, Anto JM, Camargo CA Jr. Prospective study of

CORDOVA-RIVERA ET AL

13

- Garcia-Aymerich J, Varraso R, Anto JM, Camargo CA Jr. Prospective study of physical activity and risk of asthma exacerbations in okler women. Am J Respir Crit Care Med 2009;179:999-1003.
- Russell MA, Janson C, Real FG, Johannessen A, Waatevik M, Benediktsdottir B, et al. Physical activity and asthma: A longitudinal and multicountry study. J Asthma 2017;54:938-45.
- Bedard A, Serra I, Dumas O, Basagana X, Clavel-Chapelon F, Le Moual N, et al. Time-dependent associations between body composition, physical activity, and current asthma in women: a marginal structural modeling analysis. Am J Epidemiol 2017;186:21-8.
- Saunders T, Campbell N, Jason T, Dechman G, Hernandez P, Thompson K, et al. Objectively measured steps/day in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Phys Act Health 2016; 13:1275-83.
- Yiallouros PK, Economou M, Kolokotroni O, Savva SC, Gavatha M, Ioannou P, et al. Gender differences in objectively assessed physical activity in asthmatic and non-asthmatic children. Pediatr Pulmonol 2015;50:317-26.
- Lovstrom L, Emtner M, Alving K, Nordvall L, Borres MP, Janson C, et al. High levels of physical activity are associated with poorer asthma control in young females but not in males. Respirology 2016;21:79-87.
- Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child 2007;92:963-9.
- Martinez-Gonzalez MA, Varo JJ, Santos JL, De Irala J, Gibney M, Kearney J, et al. Prevalence of physical activity during leisure time in the European Union. Med Sci Sports Exerc 2001;33:1142-6.
- 64. Bauman A, Bull F, Chey T, Craig CI, Ainsworth BE, Sallis JF, et al. The International Prevalence Study on Physical Activity: results from 20 countries. Int J Behav Nutr Phys Act 2009;6:21.
- Chhabra SK, Chhabra P. Gender differences in perception of dyspnea, assessment of control, and quality of life in asthma. J Asthma 2011;48:609-15.
- 66. Singh AK, Cydulka RK, Stahmer SA, Woodruff PG, Camargo CA Jr. Sex differences among adults presenting to the emergency department with acute asthma. Multicenter Asthma Research Collaboration Investigators. Arch Intern Med 1999;159:1237-43.
- 67. Jerning C, Martinander E, Bjerg A, Ekerljung L, Franklin KA, Jarvholm B, et al. Asthma and physical activity—a population based study results from the Swedish GA(2)LEN survey. Respir Med 2013;107:1651-8.
- Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 2010; 376:803-13.
- Clark CJ. The role of physical training in asthma. Chest 1992;101:293S-8S.
 Pelkonen M, Nokkola IL, Lakka T, Tukkinen HO, Kivinen P, Nissinen A. Delaying decline in pulmonary function with physical activity: a 25-year follow-up. Am J Respir Crit Care Med 2003;168:494-9.
- Jakes RW, Day NE, Patel B, Khaw KT, Oakes S, Luben R, et al. Physical inactivity is associated with lower forced expiratory volume in 1 second—European Prospective Investigation into Cancer-Norfolk prospective population study. Am J Epidemiol 2002;156:139-47.
- Chen H, Kuo C, Relationship between respiratory muscle function and age, sex, and other factors. J Appl Physiol 1989;66:943–8.
- Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for asthma. Cochrane Database Syst Rev 2013;9:CD001116.
 Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T.
- et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 2014;44:1521-37.
- Franca-Pinto A, Mendes FAR, de Carvalho-Pinto RM, Agondi RC, Cukier A, Stelmach R, et al. Aerobic training decreases bronchial hyperresponsiveness and systemic inflammation in patients with moderate or severe asthma: A randomised controlled trial. Thorax 2015;70:732-9.
- Mancuso CA, Choi TN, Westermann H, Wenderoth S, Wells MT, Charlson ME, Improvement in asthma quality of life in patients enrolled in a prospective study to increase lifestyle physical activity. J Asthma 2013;50: 103-7.
- Turner S, Eastwood P, Cook A, Jenkins S. Improvements in symptoms and quality of life following exercise training in older adults with moderate/severe persistent asthma. Respiration 2011;81:302-10.
- 78. Mendes FA, Goncalves RC, Nunes MP, Saraiva-Romanholo BM, Cukier A, Staturath P, et al. Efforts of analysis training on analysis and backholis.

Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009;41: 459-71.

- 80. Carlsen KH, Anderson SD, Bjermer L, Bonini S, Brasasco V, Canonica W, et al. Exercise-induced asthma, respiratory and allergic disorders in elite ath-letes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN. Allergy 2008;63:387-403.
- 81. Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015;2:27984. 82. Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM,
- Femandes FL, et al. The role of exercise in a weight-loss program on clinical

JALLERGY CLIN IMMUNOL PRACT MONTH 2018

control in obese adults with asthma. A randomized controlled trial. Am J Respir Crit Care Med 2017;195:32-42.

- 83. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised metaanalysis of data from more than 1 million men and women. Lancet 2016;388: 1302-10.
- 84. Furlanetto KC, Donaria L, Schneider LP, Lopes JR, Ribeiro M, Femandes KB, et al. Sedentary behavior is an independent predictor of mortality in subjects with COPD. Respir Care 2017;62:579-87,
- 85. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Fæedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 2011;43:1561-7.

J ALLERGY CLIN IMMUNOL PRACT VOLUME , NUMBER

ONLINE REPOSITORY

ASSOCIATIONS BETWEEN PHYSICAL ACTIVITY AND SEDENTARY TIME AND ASTHMA HEALTH OUTCOMES

Twenty-seven studies reported associations between the level of activity and asthma health outcomes. Five were longitudinal.^{E1-E5} Associations with sedentary time were addressed in 3 studies.^{E6-E8} Table IV reports the main findings of these studies.

LUNG FUNCTION

The relationship between physical activity and lung function was assessed in 10 studies. ^{E1,E3,E8-E15} Weak but significant associations were reported in 8 studies, ^{E1,E3,E8,E9-E13} from which 2 were of longitudinal design. ^{E1,E3} Brumpton et al^{E1} reported that active people with asthma had a slower decline in lung function at follow-up compared with inactive individuals. The mean decline in the forced expiratory volume in 1 second/forced vital capacity ratio was 0.36% and 0.22% per year among inactive and active participants with asthma, respectively (P = .03). Bahmer et al^{E9} reported that fewer steps/day were associated with increased airway resistance and small airway dysfunction. Van't Hul et al^{E14} did not find any correlation between measures of physical activity and spirometric assessments.

ASTHMA CONTROL AND HEALTH STATUS

Measures of asthma control or asthma-related health status were reported in 13 studies, E5, E7, E8, E12, E14-E22 12 of them of cross-sectional design. E7,E8,E12,E14-E22 The results suggest that higher levels of moderate and vigorous physical activity (MVPA) were associated with better asthma control. However, vigorous physical activity was also associated with more asthma symptoms. E5,E7,E12 Bacon et al E16 concluded that participants who engaged in the recommended levels of activity were almost 2.5 times more likely to have good asthma control compared with less active participants (adjusted odds ratio [OR] 2.47; 95% confidence interval [CI] 1.06, 5.73). Cordova-Rivera et al^{E8} also found a positive association between higher volume of MVPA and better asthma control even after adjusting for the time spent sedentary and confounders such as body mass index (BMI), age, and smoking status. The authors report that a 15-minute increase in MVPA was associated with an improved asthma control questionnaire score of -0.29 units (P = .032, adjusted R^2 for the model: 0.18). Russell et al^{E5} found that physical activity was positively associated with asthma symptoms only in participants with normal weight (BMI < 25), whereas this was not observed in participants with a BMI ≥25. In addition, in their longitudinal analysis, the relationship between baseline light activity and follow-up current asthma (defined as reporting asthma symptoms, taking asthma medication, or having an asthma exacerbation in the last 12 months) was attenuated to the null after adjusting for BMI.

Among studies reporting negative effects of activity, Verlaet et al^{E7} found that vigorous activity doubled the risk of uncontrolled asthma in females (adjusted OR [95% CI] 1.94 [1.13, 3.35]; P < .05), and in their longitudinal analysis, Russell et al^{E5} found a nonsignificant negative trend on current asthma from higher engagement in vigorous physical activity (adjusted OR [95% CI]) of current asthma for 1 to 2 vigorous activity CORDOVA-RIVERA ET AL 14.e1

sessions/week: 0.75 (0.38, 1.46) versus >3 sessions/week: 1.03 (0.42, 2.49).

In terms of health status, Ford et al E18 reported that inactive people with asthma were more than twice as likely to report poor or fair health compared with those doing regular vigorous activity (OR [95% CI] 2.36 [1.72, 3.22]).

EXACERBATION AND HEALTH CARE USE

Measures of health care utilization were evaluated in 6 studies, ^{E2,E4,E6,E21,E23,E24} 2 of which were longitudinal cohorts. ^{E2,E4} In 4 studies, less physical activity was associated with increased exacerbation and/or higher health care utilization. ^{E4,E6,E23,E24} A longitudinal study involving women with asthma^{E4} demonstrated that the higher the level of activity performed, the lower the risk of admission for exacerbation (P = .05 for trend). Strine et al^{E23} reported that inactive people with asthma were more likdy to have ≥ 3 visits to the emergency department for asthma in the last year (adjusted OR [95% CI] 2.4 [1.6, 3.6]) compared with their active peers.

Conversely, Fisher et al^{E2} did not find any association between readmission for asthma (mean follow-up 16 years) and participation (yes/no) in physical activity. However, they reported a nonsignificant trend in the association between readmission for asthma and the time spent in activity. Participants engaging in >4 hours/week of gardening and cycling had a 10% and 22% reduced risk of readmission for asthma, respectively, compared with participants spending <4 hours (hazard ratio [95% CI] for gardening 0.90 [0.58, 1.39] and cycling 0.78 [0.49, 1.25]).

EXERCISE CAPACITY

Measures of exercise capacity were evaluated in 2 crosssectional studies.^{E8,E15} Cordova-Rivera et al^{E8} found that steps/ day were strongly associated with the 6-minute walk distance, even after adjustment for sedentary time and other confounders. The authors reported that every 1000-step/day increase was associated with an increased 6-minute walk distance of 20 m (P = .01, adjusted R^2 for the model: 0.35).

BIOLOGICAL MARKERS

There was a significant association between steps/day and systemic inflammation (high-sensitivity C-reactive protein [hs-CRP]) in one of the studies. The authors report that every 1000-step increase was associated with a decrease of hs-CRP of 17%, after adjusting for sedentary time and other confounders. The same study did not find a significant association between MVPA and hs-CRP. No significant association was found between physical activity and measures of eosinophilic airway inflammation.^{E8}

SEDENTARY TIME AND HEALTH OUTCOMES

Detrimental associations between sedentary time and outcomes such as exercise capacity, lung function, and asthma control were reported in one cross-sectional study. ^{E8} However, these associations were no longer significant after adjustment for physical activity. Doggett and Dogra^{E6} reported an increased OR (95% CI) for GP consultations, 2.59 (2.34, 2.87), and hospitalizations in the past year, 1.95 (1.82, 2.08), and past 5 years, 1.13 (1.07, 1.18) (P < .001 for all results), for people who reported >10 hours of television time a week compared with those who reported ≤ 10 hours.

REFERENCES

- EI. Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, et al. Physical activity and lung function decline in adults with asthma: The HUNT Study. Respirology 2017;22:278-83.
- F2, Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjonneland A, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2016;194:855-65.
- E3. Carcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med 2007;175:458-63.
- E4. Garcia-Aymerich J, Varraso R, Anto JM, Camargo CA Jr. Prospective study of physical activity and risk of asthma exacerbations in older women. Am J Respir Crit Care Med 2009;179:999-1003.
- E5. Russell MA, Janson C, Real FG, Johannessen A, Waatevik M, Benediktsdottir B, et al. Physical activity and asthma: a longitudinal and multicountry study. J Asthma 2017;54:938-45.
- E6. Doggett N, Dogra S. Physical inactivity and television-viewing time among Aboriginal adults with asthma: a cross-sectional analysis of the Aboriginal Peoples Survey. Health Promot Chronic Dis Prev Can 2015;35:54-61.
- E7. Verlaet A, Moreira A, Sá-Sousa A, Barros R, Santos R, Moreira P, et al. Physical activity in adults with controlled and uncontrolled asthma as compared to healthy adults: a cross-sectional study. Clin Transl Allergy 2013; 3:1.
- E8. Cordova-Rivera I., Gibson PG, Gardiner PA, Powell H, McDonald VM. Physical activity and exercise capacity in severe asthma: key clinical associations. J Allergy Clin Immunol Pract 2018;5:814-22.
- E9. Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, et al. Physical activity, airway resistance and small airway dysfunction in severe asthma. Eur Respir J 2017;49:1601827.
- E10. Bruno A, Uasuf CG, Insalaco G, Barazzoni R, Ballacchino A, Gjomarkaj M, et al. Nutritional status and physical inactivity in moderated asthmatics: a pilot study. Medicine (United States) 2016;95:e4485.
- E11. Malkia E, Impivaara O. Intensity of physical activity and respiratory function in subjects with and without bronchial asthma. Scand J Med Sci Sports 1998;8: 27-32.
- E12. Ritz T, Rosenfield D, Steptoe A. Physical activity, lung function, and shortness of breath in the daily life of individuals with asthma. Chest 2010;138:913-8.

J ALLERGY CLIN IMMUNOL PRACT MONTH 2018

- E13. Yamasaki A, Kawasaki Y, Takeda K, Harada T, Hasegawa Y, Fukushima T, et al. Relationship between oxidative stress, physical activity, and vitamin intake in patients with asthma, Yonago Acta Medica 2017;60:86-93.
- E14. Van't Hul AJ, Frouws S, Van Den Akker E, Van Lummel R, Starrenburg-Razenberg A, Van Bruggen A, et al. Decreased physical activity in adults with bronchial asthma. Respiratory Medicine 2016;114:72-7.
- bronchial asthma. Respiratory Medicine 2016;114:72-7. E15. Mancuso CA, Choi TN, Westermann H, Briggs WM, Wenderoth S, Charlson ME. Measuring physical activity in asthma patients: two-minute walk test, repeated chair rise test, and self-reported energy expenditure. J Asthma 2007;44:333-40.
- E16. Bacon SL, Lemiere C, Moullec G, Ninot G, Pepin V, Lavoie KL. Association between patterns of leisure time physical activity and asthma control in adult patients. BMJ Open Respir Res 2015;2:1-7.
- E17. Westermann H, Choi TN, Briggs WM, Charlson ME, Mancuso CA. Obesity and exercise habits of asthmatic patients. Ann Allergy Asthma Immunol 2008; 101:488-94.
- E18. Ford ES, Mannino DM, Redd SC, Moriarty DG, Mokdad AH. Determinants of quality of life among people with asthma: findings from the Behavioral Risk Factor Surveillance System. J Asthma 2004;41:327-36.
- E19. Dogra S, Baker J. Physical activity and health in Canadian asthmatics. J Asthma 2006;43:795-9.
- E20, Vermeulen F, Chirumberro A, Rummens P, Bruyneel M, Ninane V, Relationship between the sensation of activity limitation and the results of functional assessment in asthma patients. J Asthma 2017;54: 570-7.
- E21, Yawn BP, Rank MA, Bertram SL, Wollan PC, Obesity, low levels of physical activity and smoking present opportunities for primary care asthma interventions: an analysis of baseline data from The Asthma Tools Study. NPJ Prim Care Respir Med 2015;25:15058.
- E22. Tikura M, Yi S, Ichimura Y, Hori A, Izumi S, Sugiyama H, et al. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet. PLoS One 2013;8:e68290.
- E23. Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity, and asthma severity in the general US population. J Asthma 2007;44:651-8.
- E24. Dogra S, Baker J, Ardern CI. The role of physical activity and body mass index in the health care use of adults with asthma. Ann Allergy Asthma Immunol 2009;102:462-8.

APPENDIX II: CHAPTER 2 – SUMMARY FROM AAAAI WEBSITE

American Academy of Find an Allergy Asthma & Immunology	Allergist / Immunologist	Search Your Symptom	is Ask the Expert	Search AAAAI	Q SUPPORT THE AAAAI
CONDITIONS & TREATMENTS EDUCATION & TRAINING PR	ACTICE RESOURCES	ABOUT AAAAI			DONATE
Home • Global • Latest Research Summaries • New Research from JAC sedentary are adults with asthma?	I: In Practice + How phys	ically active and		Ħ	share f 🕊 in 🖨
HOW PHYSICALLY ACTIVE AN	ND SEDEN	TARY AR	e adult	s with /	ASTHMA?
Published online: March 3, 2018					
Asthma is an obstructive airway disease that causes significant burde disease such as airflow limitation, exertional dyspnea, and poor contr detrimentally impact the amount of physical activity and sedentary ti engage. Being physically inactive and engaging in excessive sedentary modifiable risk factors for the development of several chronic disease Additionally, it has been suggested that people engaging in higher lev lower risk of developing asthma. Nevertheless, the prevalence of these and how they relate to different disease outcomes has not been thord In a recently published article in <i>The Journal of Allergy and Clinical In</i> Rivera and colleagues systematically synthesized the literature chara sedentary time in adults with asthma and evaluated the associations clinical and physiological characteristics of the disease. Additionally, levels using meta-analysis of steps/day.	n to individuals. Sympto ol of symptoms are likel me in which adults with r time are well-recogniz as and premature morta els of physical activity r se behaviors in adults w bughly reviewed. mmunology: In Practice, cterizing physical activi between these behavior the authors estimated a	oms of the ly to e asthma ed lity. might have a ith asthma, Cordova- ity and rs and sectivity	ADDITIONAL ASTHMA SY MANAGEM	. INFORMATION (MPTOMS, DIAGNOSIS, ENT =	TREATMENT &
The authors found that physical activity in adults with asthma was low that was more accentuated in more severe disease, in females compar with asthma compared with their younger counterparts. The level of differ between adults with asthma and controls, but literature on this also found that higher levels of physical activity were associated with disease control, health status, and health care use. High sedentary tir health care use, and poorer lung function, asthma control and exercis analysis performed in the seven studies measuring steps/day with an mean of 8390 steps/day.	wer compared to contro red with males, and in o sedentary time did not a behavior was scarce. T better measures of lun ne was associated with e capacity. Results of th accelerometer, showed	vis; a trend Ider people appear to he authors g function, higher ie meta- a pooled			
Addressing inactivity and sedentary time may be a potential nonphar management of asthma. Disease severity, sex, and age should guide th	macological approach ir 1ese approaches.	n the			
The Journal of Allergy and Clinical Immunology: In Practice is an offic on practical information for the practicing clinician.	ial journal of the AAAA	I, focusing			

APPENDIX III: CHAPTER 3 – PUBLISHED ARTICLE

Original Article

Physical Activity and Exercise Capacity in Severe Asthma: Key Clinical Associations

Laura Cordova-Rivera, BPhty(Hons)^{a,b,c}, Peter G. Gibson, MBBS^{a,b,c,d}, Paul A. Gardiner, PhD^{a,f}, Heather Powell, MMedSc^{b,c,d}, and Vanessa M. McDonald, PhD^{a,b,c,d} New Lambton Heights and Newcastle, New South Wales, Australia; and Woolloongabba and South Brisbane, Queensland, Australia

What is already known about this topic? People with severe asthma seem to engage in lower levels of activity than controls. Low physical activity in severe asthma is associated with impulse oscillometric airway resistance and small airway dysfunction.

What does this article add to our knowledge? Physical activity measured as steps per day is strongly associated with exercise capacity and systemic inflammation in severe asthma. To a lesser extent, activity and sedentary time are associated with asthma control, health status, and lung function.

How does this study impact current management guidelines? These results suggest that addressing inactivity and sedentary time may be a potential nonpharmacological approach in the management of severe asthma.

^cHunter Medical Research Institute, New Lambton Heights, New South Wales, Australia

- "Centre for Health Services Research, The University of Queensland, Woolloongabba, Queensland, Australia
- ⁴Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
- This research was supported by a University of Newcastle and Priority Research Centre for Healthy Lungs postgraduate scholarship and the Hunter Medical Research Institute, Australia.
- Conflicts of interest: L. Cordova-Rivera has received research support from John Hunter Hospital Charitable Trust and Hunter Medical Research Institute. P. G. Gibson has participated in educational symposia funded by AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, and Novartis: has participated in studies funded by GlaxoSmithKline and AstraZeneca; and holds a National Health and Medical Research Council (NHMRC) Practitioner Fellowship. P. A. Gardiner is supported by an NHMRC-Australian Research Council Dementia Research Development Fellowship and has participated in an educational symposium funded by Boehringer Ingelheim, V. M. McDonald has received research support from John Hunter Hospital Charitable Trust and Hunter Medical Research Institute, NHMRC Translating Research Into Practice (TRIP) fellowship, University of Newcastle, Cyclopharm, AstraZeneca, GlaxoSmithKline, and Lung Foundation Australia; has received lecture fees for participation in educational symposia funded by AstraZeneca, GlaxoSmithKline, Novartis, and Menarini; has participated in advisory boards for GlaxoSmithKline, AstraZeneca and Menarini; and has received travel support from Menarini. The rest of the authors declare that they have no relevant conflicts of interest.

Available online

2213-2198

BACKGROUND: Physical inactivity and sedentary time are distinct behaviors that may be more prevalent in severe asthma, contributing to poor disease outcomes. Physical activity and sedentary time in severe asthma however have not been extensively examined.

OBJECTIVE: We aimed to objectively measure physical activity and sedentary time in people with severe asthma compared with age-matched control participants, describing the associations of these behaviors with clinical and biological outcomes. We hypothesized that people with severe asthma would be less active and more sedentary. In addition, more activity and less sedentary time would be associated with better clinical outcomes and markers of systemic and airway inflammation in people with severe asthma.

METHODS: Adults with severe asthma (n = 61) and sex- and age-matched controls (n = 61) underwent measurement of lung function, exercise capacity, asthma control, health status, and airway and systemic inflammation. Physical activity and sedentary time were measured using an accelerometer.

RESULTS: The severe asthma and control groups were matched in terms of age and sex (32 [53%] females in each group). Individuals with severe asthma accumulated less minutes per day in moderate and higher intensity activity, median (IQR) 21.9 (12.9-36.0) versus 41.7 (29.5-65.2) (P < .0001) and accumulated 2,232 fewer steps per day (P = .0002). However, they engaged in more light-intensity physical activity. No differences were found for sedentary time. In a multivariate regression model, steps per day were strongly and independently associated with better exercise capacity in participants with severe asthma (coefficient, 0.0169; 95% CI, 0.008-0.025; P < .001). CONCLUSIONS: People with severe asthma perform less moderate and vigorous activity than do controls. Higher levels of

activity and lower levels of sedentary time are associated with

1

^aNational Health and Medical Research Council Centre of Excellence in Severe Asthma, New Lambton Heights, New South Wales, Australia

^bPriority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia

^dDepartment of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia

Received for publication June 19, 2017; revised September 9, 2017; accepted for publication September 28, 2017.

Corresponding author: Vanessa M. McDonald, PhD, Level 2 West Wing, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia. E-mail: vanessa. mcdonald@newcastle.edu.au.

^{© 2017} American Academy of Allergy, Asthma & Immunology https://doi.org/10.1016/j.jaip.2017.09.022

Abbreviations used 6MWD-6-minute walk distance ACQ-Asthma Control Questionnaire AQLQ-Asthma Quality of Life Questionnaire COPD-Chronic obstructive pulmonary disease FENO-Fractional exhaled nitric oxide hs-CRP-High-sensitivity C-reactive protein MVPA-Moderate- to vigorous-intensity physical activity

better exercise capacity, asthma control, and lower levels of systemic inflammation. © 2017 American Academy of Allergy, Asthma & Immunology (J Allergy Clin Immunol Pract 2017;∎:≡-■)

Key words: Severe asthma; Physical activity; Sedentary time; Accelerometry; Exercise capacity; Associations; Clinical outcomes

Severe asthma is a heterogeneous and complex disease in which diverse clinical and physiological presentations are common.¹ Severe asthma represents a high patient and health care burden.² It is, thus, necessary to explore novel strategies to improve health status in severe asthma and to minimize this burden. The importance of multidisciplinary management approaches in severe asthma has been recognized.³ Within these, the identification and subsequent management of modifiable risk factors or behaviors, such as inactivity, can be seen as an adjunct strategy for the management of the disease.⁴

In general populations, physical activity and exercise are regarded as highly beneficial, leading to positive health outcomes.² Engagement in excess sedentary time is an important risk factor for the development of several chronic diseases and premature mortality.8.9 Physical activity is defined as any bodily movement generated by the skeletal muscles and resulting in energy expenditure. Depending on intensity and metabolic equivalent of task units, it is classified as light, moderate, or vigorous physical activity, where light corresponds to the lower metabolic equivalent of tasks or energy expenditure.5 Mild stretching, low impact dancing, and running correspond to examples of light, moderate, and vigorous physical activity, respectively.¹⁰ Sedentary time refers to activities performed while awake in a lying or sitting position and expending low levels of energy (≤1.5 metabolic equivalent of tasks).¹¹ The physical activity and sedentary guidelines recommend engaging in at least 150 min/wk of moderate activity, or 75 min/wk of vigorous activity (or equivalent combination), and to sit less and for shorter periods of time.¹² In other obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), physical inactivity and sedentary time are increased compared with healthy controls.13,14 These behaviors have been independently associated with worse clinical and inflammatory outcomes,15 and increased mortality in this disease. 16,17 In asthma, a potential link between inactivity and mortality has not been reported. However, higher adherence to physical activity in asthma has been associated with better asthma control,18 reduced exacerbations,19 and reduced health care use.²⁰ Data on inflammatory parameters are scarce.²

In severe asthma, inactivity and sedentary time are likely to be particularly extreme due to the poor disease control and associated comorbidities, such as obesity, anxiety, and depression.¹ Despite this, very few studies have objectively measured physical activity in this population,⁻⁻ and the prevalence of sedentary time has not been addressed in severe asthma. In addition, very

JALLERGY CLIN IMMUNOL PRACT

MONTH 2017

few studies have assessed the impact of these behaviors on health outcomes in the disease.²²

The aims of this study therefore were to objectively measure physical activity and sedentary time in a severe asthma population compared with age-matched controls, and to describe the associations of these behaviors with clinical measures such as asthma control, health status, exercise capacity, lung function, and markers of airway and systemic inflammation.

We hypothesized that people with severe asthma are less active and more sedentary than are their age- and sex-matched counterparts, and that higher levels of physical activity and lower levels of sedentary time in severe asthma are associated with better clinical outcomes and lower levels of systemic and airway inflammation. In addition, we sought to test the hypothesis that moderate-intensity physical activity can counteract the detrimental health outcomes associated with high levels of sedentary time, as it has been previously suggested.^{25,24}

METHODS Participant selection

A cross-sectional characterization study was conducted. Adults with severe asthma and sex- and age-matched controls were recruited and underwent a multidimensional assessment with objective measures of physical activity and sedentary time. Participants with severe asthma were recruited consecutively from the respiratory ambulatory care clinics at John Hunter Hospital (Newcastle, Australia) and the clinical research databases of the Priority Research Centre for Healthy Lungs at the University of Newcastle (Newcastle, Australia). Participants with respiratory physician-diagnosed severe asthma were eligible if they met the current guideline definition for severe asthma1: prescribed Global Initiative for Asthma step 4 treatment or above, defined as 1,000 μg inhaled corticosteroid fluticasone equivalent and long-acting $\beta 2\text{-agonists},^{25}$ had evidence of airflow limitation (FEV1 <80% predicted), and ongoing poor asthma control (Asthma Control Questionnaire [ACQ]²⁶ score ≥1.5 units or had experienced a severe exacerbation in the last 12 months requiring oral corticosteroids). Participants were dinically stable during visits (no increase in asthma symptoms in the last 4 weeks). Otherwise, their enrolment was postponed until they were stable. Exclusion criteria included malignancy with poor prognosis (<3 months).

Age- and sex-matched controls were recruited via the research database of the Hunter Medical Research Institute and community advertisement, and were eligible if they were older than 18 years and nonsmokers and had no objective evidence of chronic respiratory disease.

Ethics approval was granted by the human research ethics committees of the Hunter New England Local Health District (08/08/20/3.10) and the University of Newcastle, Australia. The study was conducted according to Good Clinical Practice Guidelines and each participant provided written informed consent.

Procedures

Clinical measurements. Participants underwent a multidimensional assessment²⁷ involving measurement of height and weight, allergy skin prick tests, serum IgE, comorbidities,²⁸ anxiety and depression,²⁹ and smoking status. Further assessments are described below. Asthma control and health status. Asthma control was assessed using the ACQ.²⁶ Higher scores represent poorer asthma control. Health status was measured using the Asthma Quality of Life Questionnaire (AQLQ).³¹ Higher scores represent better asthma-related quality of life. A change of 0.5 or more units is considered clinically significant for both questionnaires.^{32,33}

Airflow limitation. Airflow limitation was assessed by measuring spirometry: FEV₁, forced vital capacity, and FEV₁/forced vital capacity ratio (Medgraphics, CPFS/D USB Spirometer; BreezeSuite v7.1, MGC Diagnostics, Saint Paul, Minn).³⁴ FEV₁ and forced vital capacity percent predicted were calculated using the Third National Health and Nutrition Examination Survey predicted equations.³⁵

Airway inflammation. Eosinophilic airway inflammation was assessed in 2 ways: using fraction of exhaled nitric oxide (FENO) (ANALYZER CLD 88 Series with DENOX 88; Eco Physics AG, Duernten, Switzerland)³⁶ and from sputum eosinophil counts obtained from induced sputum. The samples were induced³⁷ using nebulized 4.5% or 0.9% saline if the prebronchodilator FEV₁ was less than or equal to 1 L. Lower respiratory sputum portions were selected and dispersed using dithiothreitol. Total cell counts and cell viability (Trypan blue exclusion) were performed, followed by preparation of cytospins for differential cell counts using May-Grunwald Giemsa. Airway eosinophilia was defined as sputum differential eosinophil count of greater than or equal to 3%.³⁸

Systemic inflammation. Systemic inflammation was measured by peripheral blood high-sensitivity C-reactive protein (hs-CRP) and analyzed through the Hunter Area Pathology Service.

Physical activity and sedentary time. Physical activity and sedentary time were assessed using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, Fla), a device widely used in research,35 and validated for populations with COPD.42 This is a small device (4.6 cm × 3.3 cm × 1.5 cm) that participants were fitted with to wear on a belt around their waist, positioned over the dominant hip, for 14 consecutive days. They were instructed to remove the monitor during water-based activities and to record sleeping time and nonwear periods in a diary. The ActiGraph measures timevarying changes in force and activity levels recorded as counts, which are then summed over a user-specified time frame, or epoch.43 The device was initialized using the ActiLife 6.11.6 Data Analysis Software (ActiGraph, Pensacola, Fla), to collect raw data (accelerations or counts) in the vertical axis at 30 Hz rate in an epoch length of time of 10 seconds. Sleep and any nonwear time were estimated from the diaries and visual examination of the ActiGraph data and removed before dassification. ActiLife software was used to summarize the data. We classified time according to the widely used Freedson 1998 cutoff points: Sedentary (0-99 counts per minute [CPM]), light physical activity (100-1951 CPM), and moderate and above physical activity (≥1,952 CPM).44 The ActiGraph also captures steps per day. Our measures of physical activity and sedentary time were daily time in sedentary time (min/d), daily time in light physical activity (min/d), daily time in moderate- to vigorousintensity physical activity (MVPA) (min/d), and daily number of steps (Steps [steps/d]). We reported both MVPA and Steps because

CORDOVA-RIVERA ET AL 3

although the MVPA describes the volume of moderate- to highintensity activity and can be compared with the physical activity recommendations,¹² Steps is an output easy to interpret and could be used as a motivational and informative tool both for patients and for clinicians. Sedentary time and light physical activity were standardized for wear time by the residuals method.⁴⁵ The data were considered valid if there were recordings of 4 or more days, with 10 or more hours of recording each day.

Statistical analysis

Data were analyzed using STATA 13 (Stata Corporation, College Station, Texas). Values are expressed as means with CIs for parametric data and medians with interquartile range for nonparametric data. Differences between the group with severe asthma and the ageand sex-matched control group were assessed using the Student *t* test or the Wilcoxon rank sum test based on normality.

The associations between the different dinical and biological outcomes and the behavioral variables (sedentary time, MVPA, and Steps) adjusting for potential confounders (body mass index and current smoking status) were estimated using simple linear regression analysis. Each behavioral variable was used as a predictor of a given clinical or biological outcome (dependent variable: FEV1% predicted, 6MWD, ACQ score, AQLQ score, FENO, and hs-CRP). Age and sex were regarded as biological confounders and included in all the models. Behavioral variables and confounders with a P value of less than .2 were also included in a stepwise multiple linear regression analysis to identify the associations between each behavioral variable (sedentary time, MVPA, and Steps) and each biological/ clinical outcome (model 1). To test whether moderate physical activity (Steps or MVPA) can counteract the detrimental health outcomes associated with sedentary time, further models were used, adjusting for sedentary time as well as other confounders (model 2). Assumptions for linear regressions were met. Colinearity between the activity (MVPA or Steps) and sedentary variables was rejected. Hs-CRP and FENO were transformed to the natural logarithm for the linear regression. This means that the dependent variable changes by $100 \times [exp(coefficient) - 1]$ percent for each 1-unit increase in the independent continuous variable. Logistic regressions were used to test the associations of sedentary and active time with airway eosinophilia, and the association between better performance in the 6-minute walk test (defined as 2 median [2499 m]) and higher engagement (≥30 minutes) in MVPA. Spearman rank correlation tested the relationship between activity variables and 6MWD. Results were reported as significant when P was less than .05.

RESULTS

Characteristics of the study population

A total of 143 participants (those with severe asthma = 74, controls = 69) completed the study and 122 (those with severe asthma = 61, controls = 61) were included in the analysis; 21 participants were excluded because of not having valid accelerometer data (those with severe asthma = 8, controls = 5) or because they did not fulfill the disease inclusion criteria after assessment (those with severe asthma = 5, controls = 3). Participants with severe asthma had long-standing disease (median, 27 years) and poor asthma control. They also had a higher body mass index and increased prevalence of atopy, lower lung function, and higher scores of anxiety and depression compared with age- and sex-matched controls. Demographic and clinical characteristics are presented in 1 able 1.

J ALLERGY CLIN IMMUNOL PRACT MONTH 2017

|--|

Characteristic	Patients with severe asthma	Controls	P value
N	61	61	
Sex, F M (% females)	32 29 (52.46)	32 29 (52.46)	1
Age (y), median (IQR)	59 (43 to 68)	54 (34 to 63)	0.0633
BMI (kg/m ²), mean (95% CI)	30.00 (28.06 to 31.89)	25.40 (24.42 to 26.38)	0.0001
Smoking status, current ex (%)	6.6 47.5	0 29.5	
Pack-year, mean (95% CI)	5.0 (2.71 to 7.28)	3.0 (-0.43 to 6.35)	0.322
Years since diagnosis, median (IQR)	27.11 (15.03 to 50.76)	NA	
OCS, % participants medicated	39.34	NA	
ICS* dose (µg), mean (95% CI)	1091.10 (961.25 to 1220.96)	NA	
Prebronchodilator FEV1 (L), mean (95% CI)	2.27 (2.05 to 2.49)	3.20 (2.98 to 3.42)	< 0.0001
Prebronchodilator FEV ₁ % predicted, mean (95% CI)	75.12 (69.41 to 80.82)	96.94 (93.44 to 100.45)	< 0.0001
Prebronchodilator FVC (L), mean (95% CI)	3.39 (3.13 to 3.66)	4.01 (3.75 to 4.27)	0.0012
Prebronchodilator FVC% predicted, mean (95% CI)	87.01 (82.32 to 91.71)	96.51 (93.16 to 99.85)	0.0013
FEV ₁ /FVC ratio, mean (95% CI)	0.67 (0.63 to 0.69)	0.80 (0.78 to 0.81)	< 0.0001
hs-CRP (mg/L), median (IQR)	1.8 (1 to 6)	1.1 (0.6 to 2.5)	0.0024
FENO (ppb), median (IQR)	11.5 (5.42 to 31.45)	9.84 (4.6 to 18.3)	0.1024
Sputum eosinophilia (≥3%), n (%)	29 (59.2)	5 (11.36)	< 0.0001
IgE (IU/mL), median (IQR)	225.500 (70 to 498)	NA	
Atopy, n (%)	48 (82.76)	35 (58.33)	0.0037
HADS (anxiety score), mean (95% CI)	6.67 (5.70 to 7.64)	3.80 (3.02 to 4.58)	< 0.0001
HADS (depression score), mean (95% CI)	4.57 (3.81 to 5.34)	1.37 (0.92 to 1.82)	< 0.0001
CCI score ≥ 1 , n (%)	16 (26.70)	2 (3.28)	0.0003
ACQ score (units), mean (95% CI)	2.23 (1.95 to 2.50)	NA	
AQLQ score (units), mean (95% CI)	5.15 (4.85 to 5.46)	NA	
Severe exacerbation past 12 mo, median (IQR)	2 (1 to 5)	NA	
6MWD (m), median (IQR)	499 (417.7 to 542.2)	616.2 (568.4 to 659.30)	< 0.0001
6MWD % predicted, mean (95% CI)	71.78 (68.13 to 75.44)	85.71 (82.51 to 88.92)	< 0.0001

BMI, Body mass index; CCI, Charlson comorbidity index; FVC, forced vital capacity; HADS, Hospital Anxiety and Depression Scale; ICS, inhaled corticosteroid; ICS*, fluticasone equivalent; IQR, interquartile range; NA, not applicable or not assessed; OCS, oral corticosteroid. Bold indicates statistical significance (P < .05).</p>

Physical activity and sedentary time in the group with severe asthma and the age- and sex-matched control group

Compared with controls, people with severe asthma performed less activity of at least moderate intensity. The group with severe asthma had a median difference of 19.8 fewer minutes of MVPA per day (P < .0001) and 2455 fewer steps per day (P = .0002). Conversely, the population with severe asthma engaged in more light physical activity, with a mean (95% CI) difference of 21.7 (2.2-41.1) more minutes per day (P = .029). No statistically significant differences were found in sedentary time between the 2 populations (Figure 1).

Associations of physical activity and sedentary time with clinical outcomes and biological markers in participants with severe asthma

Exercise capacity. Physical activity (Steps and MVPA) and sedentary time were significantly associated with exercise capacity, explaining 35.25%, 29.69%, and 27.3% of the adjusted variance in the 6MWD, respectively (Table II/model 1). For every additional 1,000 steps, there was a 16.9-m increase in the 6MWD. For every minute increase in sedentary time, there was a decrease of 0.47 m in the 6MWD. Accordingly, every additional hour spent sedentary is associated with a 28.2-m reduction in the 6MWD.

There was a linear relationship between Steps and the 6MWD (Figure 2, *A*). For MVPA (Figure 2, *B*) there was also an apparent threshold effect where those participants with a 6MWD performance of greater than or equal to the median (499 m) were also the participants engaging daily in 30 minutes or more of MVPA, a volume of activity that fits within the physical activity recommendations¹² (odds ratio, 6.09; P = .005). This suggests that a value of around 500 m in the 6MWD could identify individuals engaging in recommended levels of MVPA.

Simultaneously including sedentary time with MVPA or Steps in the model attenuated the associations of MVPA and sedentary time to the null. However, the association of Steps with exercise capacity remained similar and still statistically significant (Table II/model 2). A 1,000-step increase was associated with better performance in the 6MWD by 21 m. This suggests that regardless of the time spent sedentary, higher levels of walking were still strongly associated with a significant improvement in exercise capacity.

Lung function, asthma control, and health status. The activity and sedentary variables were also significantly associated with lung function, asthma control, and health status, except for Steps and FEV₁% predicted, and sedentary time and the AQLQ score. In contrast to the impact of activity on exercise canacity, the effect on these clinical outcomes was weaker but

FIGURE 1. Sedentary time (A), Light PA (B), Moderate and vigorous PA (C), and Steps (D) in severe asthma and aged-matched control. Values reported as mean \pm SD or median [interquartile range]. Number of participants in each group (n = 61). C, controls; PA, physical activity; SA, severe asthma.

TABLE II. Association of physical activity and sedentary time with exercise capacity as 6MWD

	Models	for 6MWD	
Model	Coefficient (95% CI)	Significance	Adjusted R ²
Model 1			
ST	-0.47 (-0.79 to -0.14)	.006	0.27
MVPA	1.70 (0.64 to 2.75)	.002	0.30
Steps	0.01 (0.00 to 0.02)	.000	0.35
Model 2			
Steps	0.02 (0.00 to 0.04)	.010	
ST	0.18 (-0.39 to 0.75)	.531	0.35
MVPA	1.24 (-0.32 to 2.80)	.117	
ST	-0.19 (-0.66 to 0.28)	.429	0.29

BMI, Body mass index; PA, physical activity; ST, sedentary time.

Model 1 = each behavioral variable (ST, MVPA, or Steps) as a predictor of exercise capacity. Model 2 = PA (Steps or MVPA) as a predictor of exercise capacity, after adjustment for ST and confounders. Models adjusted for age, sex, and BMI. Bold indicates statistical significance (P < .05).

nonetheless statistically significant and biologically plausible. For every 10-minute increase in MVPA, the ACQ score decreased (improved) by 0.21 units, whereas the AQLQ score increased (improved) by 0.16 units (Table III/model 1). These results suggest that a 25-minute increase in MVPA is associated with a clinically significant improvement in ACQ score (0.52 units). Regarding sedentary time, every 100-minute increase in this behavior is associated with a clinically significant decline in the ACQ score (0.51 units).

The only activity variable that remained statistically significant after adjustment for sedentary time was ACQ score and MVPA. Every 15-minute increase in MVPA was associated with a decrease (improved) of 0.29 units in ACQ score (Table III/ model 2). The coefficient of sedentary time was also attenuated to the null in this model.

In the remaining models, the activity (MVPA or Steps) and sedentary variables together were mutually excluded. Nevertheless, in most of the models, the direction of the coefficients indicated that the decrease in sedentary time and the increase in activity led to modest improvements in clinical markers.

Biological markers. No relationship was found between the behavioral variables and eosinophilic airway inflammation measured by sputum cell counts (Table IV). In simple linear regression analyses, the significance level for FENO was more than .2 and thus not included in the stepwise model.

Steps were significantly associated with hs-CRP. For every increase of 1,000 steps, the hs-CRP was reduced by 13%. No relationship was found between hs-CRP and MVPA or sedentary time (Table V/model 1).

Only Steps remained significantly associated with hs-CRP after adjustment for sedentary time. For every increase of 1,000 steps, the hs-CRP was reduced by 17% (Table V/model 2). The coefficients for the associations of sedentary time were

JALLERGY CLIN IMMUNOL PRACT **MONTH 2017**

FIGURE 2. Relationship between physical activity and 6MWD in meters. A, $\rho = 0.453$. B, $\rho = 0.502$ (P < .001 both).

TABLE III. Association of physical activity and ST with clinical outcomes

	Models for FEV	Models for FEV ₁ (%)		Models for AQL	Models for AQLQ (units)			Models for ACQ (units)		
Model	Coefficient (95% CI)*	Sig.	Adj. R ²	Coefficient (95% CI)*	Sig.	Adj. <i>R</i> ²	Coefficient (95% CI)*	Sig.	Adj. R ²	
Model 1										
ST	-7.90 (-15.63 to -0.17)	.045	0.10	-0.35 (-0.76 to 0.04)	.081	0.15	0.51 (0.14 to 0.89)	.007	0.12	
MVPA	28.69 (3.31 to 54.07)	.027	0.11	1.59 (0.29 to 2.89)	.018	0.19	-2.15 (-3.33 to -0.97)	.001	0.19	
Steps	0.17 (-0.03 to 0.38)	.096	80.0	0.01 (0.00 to 0.02)	.015	0.20	-0.01 (-0.02 to -0.00)	.005	0.13	
Model 2										
Steps	-0.00 (-0.38 to 0.37)	.994		0.01 (-0.00 to 0.03)	.078		-0.00 (-0.02 to 00.0)	.304		
ST	-7.95 (-22.25 to 6.35)	.27	80.0	0.19 (-0.53 to 0.23)	.597	0.19	0.21 (-0.47 to 0.90)	.537	0.12	
MVPA	20.65 (-17.43 to 58.73)	.282		1.59 (-0.37 to 3.55)	.111		-1.94 (-3.69 to -0.18)	.032		
ST	-3.27 (-14.78 to 8.23)	.571	0.10	-0.00 (-0.59 to 0.59)	.998	0.18	0.08 (-0.44 to 0.62)	.740	0.18	

Adj., Adjusted; BMI, body mass index; Sig., significance; ST, sedentary time.

For rationale of models 1 and 2, refer to captions in Table II. All models adjusted for age and sex. AQLQ score adjusted for smoking status. AQQ score adjusted for smoking status and BMI.

Bold indicates statistical significance (P < .05). *Coefficients and CI expressed as $\times 10^{-2}$.

TABLE IV.	Association	of	physical	activity	and	ST	with	airway
inflammatio	on							

	Simple logistic regression airway eosinophilia								
Predictors	Odds ratio (95% CI)	Significance	Adjusted R ²						
ST	1.00 (0.99-1.01)	.315	0.02						
MVPA	1.01 (0.98-1.035)	.470	0.01						
Steps	1.00 (0.99-1.00)	.246	0.02						

ST, Sedentary time

Airway eosinophilia defined as eosinophil count of ≥3% in sputum cell.

attenuated to the null. The model explained 48.6% of the variance in systemic inflammation.

DISCUSSION

This study has described the extent to which individuals with severe asthma engage in physical activity and sedentary time compared with a sex- and age-matched control population. We have demonstrated that people with severe asthma are considerably less active. In addition, we found that levels of activity and sedentary time are strongly and independently associated with exercise capacity, and to a lesser extent with other important

clinical and biological outcomes. Our results also demonstrate that the detrimental effects of sedentary time are attenuated when participants engage in some physical activity, especially of moderate or higher intensity.

In terms of the levels of activity and sedentary time, our results are consistent with those of several studies conducted in patients with mild and moderate asthma using both objective and sub-jective activity measurement.^{18,22,46,48} However, very few studies have objectively examined physical activity in patients with severe ²² and to our knowledge this is the first study to report asthma. levels of sedentary time in this population. Our finding that people with severe asthma move 31.4% fewer steps per day compared with a control group is consistent with the finding of a recent study that reported 31% lower steps.²² However, in comparison to Bahmer et al,²² our study reported a larger difference in MVPA between people with severe asthma and controls (47.5% vs 23%), and the participants in our study were less active than the participants in the Bahmer et al²² study (22 min/d vs 125 min/d of MVPA). It should be noted though that the authors22 used a different device to measure MVPA (SenseWear Pro Armband; BodyMedia, Pittsburgh, Pa). Studies using the Acti-Graph in a bronchiectasis population⁴⁹ have reported similar activity results as our study.

TABLE V. Association	of	physical	activity	and	sedentary	time	with	inflam matory	biomarkers	
										_

	SLR models f	or Ln_FENO		Models for L	n_hs-CRP	
Model	Coefficient (95% CI)*	Sig.	Adj. R ²	Coefficient (95% CI)*	Sig.	Adj. R ²
Model 1						
ST	1.92 (-2.23 to 6.07)	.358	-0.00	3.36 (-0.08 to 6.80)	.56	0.45
MVPA	-1.02 (-14.74 to 12.70)	.882	-0.02	-10.47 (-21.79 to 0.84)	.069	0.45
Steps	-0.02 (-0.13 to 0.08)	.617	-0.01	-0.13 (-0.22 to -0.03)	.006	0.49
Model 2						
Steps				-0.17 (-0.34 to -0.00)	.038	
ST	NE)		-2.09 (-8.24 to 4.04)	.497	0.49
MVPA				-5.15 (-21.95 to 11.63)	.54	
ST	NI)		2.20 (-2.92 to 7.32)	.393	0.45

Adj., Adjusted; BMI, body mass index; Ln_FENO, natural logarithm FENO; Ln_be-CRP, natural logarithm hs-CRP; ND, not done; Sig., significance; SLR, simple linear regression analysis; ST, sedentary time.

For rationale of models 1 and 2, refer to captions in Table II. Ln_hs-CRP was adjusted for age, sex, and BMI.

Bold indicates statistical significance (P < .05). *Coefficients and CI expressed as $\times 10^{-3}$.

We observed that the difference in physical activity between patients with severe asthma and controls is larger for higher intensities of activity than for Steps. This finding has also been reported in patients with mild to moderate COPD,⁵⁰ and suggests that activity limitation is first manifested at higher intensities of activity rather than lighter. In fact, our population with severe asthma accumulated more minutes in light physical activity than did healthy controls.

In the general adult population, a widely promoted target for a desirable level of activity is 10,000 steps.⁵¹ Our population with severe asthma achieved only 5362 daily steps, thus a little more than half of the recommended level, and similar to the level reported in patients with moderate to severe COPD^{50,52} and patients with bronchiectasis.49 This suggests that people with obstructive airway disease regardless of diagnosis are engaging in levels of activity that are far below those recommended for adult populations. Direct comparisons between these populations have not yet been reported.

The beneficial role of physical activity and exercise on outcomes such as exacerbations, asthma control, cardiopulmonary fitness, and health status has been previously described in populations with general asthma.^{19,20,53-55} However, to our knowledge, this is the first time that the association between exercise capacity and objectively measured physical activity and sedentary time has been reported in patients with severe asthma. Sedentary time attenuated the associations of MVPA with exercise capacity but not the associations of Steps with exercise capacity. This suggests that the greatest benefit on exercise capacity is achieved by performing activity of light to moderate intensity distributed throughout the day, rather than more vigorous but sporadic activity.

The 6MWD has been identified as a predictor of survival in COPD⁵⁶ and associated with hospitalization and increased mortality.⁵⁷⁻⁵⁹ In COPD, a 6MWD of 350 m or less is regarded as poor performance.58 We found that individuals with a 6MWD of 499 m or more were 6 times more likely to engage in recommended levels of MVPA (\geq 30 minutes daily),¹² suggesting that this distance may be a suitable cutoff for people with severe asthma. However, this requires further investigation. A difference of 30 m or more has been proposed as the minimal clinically important difference, and furthermore a decrease of this magnitude is associated with increased risk of death in COPD.60 To date the 6MWD minimal clinically important difference for severe asthma is not known. However, the fact that an increase of 1,000 steps was associated with an increase of 22 m (after adjusting for sedentary time) indicates the potential benefits of targeting physical activity as a modifiable behavior in severe asthma.

Our study also found that physical activity and sedentary time are associated with asthma control, health status, and lung function. The strength of the associations was rather modest and a very large change in activity (>4,000 Steps or >25 minutes of MVPA) was necessary to reach the 0.5 unit minimal clinically important difference defined for the ACQ33 and the AQLQ.3 However, because the promotion of activity in severe asthma should be considered as an adjunct treatment, it may contribute to improved disease control when combined with pharmacological and other risk factor management.

We did not find any association between the activity or sedentary variables and measures of eosinophilic airway inflammation. However, it should also be noted that our population was on maximum-intensity inhaled corticosteroid therapy, and this may have modified any potential relationship between the behavioral variables and airway eosinophilia or FENO. This is further supported by the finding that FENO levels, a marker of corticosteroid responsiveness,36 were not different between the severe asthma and control populations, suggesting that FENO was suppressed by inhaled corticosteroid treatment. These findings suggest that the pathway of inactivity in severe asthma may be more related to breathlessness and/or exercise capacity than to airway inflammation.

Others have reported the positive impact of exercise on markers of airway inflammation (FENO and sputum eosinophilia). This may relate to the baseline characteristics of the participants rather than exercise itself as studies have reported decrease in FENO after a bout of exercise in physically inactive people with asthma and not in those who were active,⁶¹ and participants with increased inflammatory parameters (FENO ≥26 ppb and ≥3% sputum eosinophils) had the greatest improvement after exercise training.54 Whether the positive effects of exercise on airway inflammation can be reproduced by shifting to higher and extended levels of daily physical activity needs further investigation.

In terms of systemic inflammation, we found that more steps per day were associated with lower hs-CRP levels, after adjustment for body mass index, sedentary time, and other confounders. This suggests a potential benefit of physical activity as a complementary therapy to target systemic inflammation in severe asthma. The role of hs-CRP in the clinical management of severe asthma is still undear. However, there are data linking systemic inflammation to increased risk of exacerbation,6 and to increased asthma severity.63 Exercise also appears to have antiinflammatory effects.⁶⁴ In COPD, it has been demonstrated that higher levels of physical activity are independently associated with lower levels of hs-CRP.65,66 However, very little data exist on systemic inflammation and exercise in asthma. One study reported a reduction in serum proinflammatory cytokines (IL-6 and monocyte chemotactic protein 1) after aerobic training.⁵⁴ Interestingly, Scott et al⁶⁷ reported decreases in serum IL-6 levels with exercise and diet, but not with exercise alone, and no change in hs-CRP with either intervention. Our findings may support the idea that activity carried out at a moderate level has a more beneficial effect on systemic inflammation than more strenuous, but acute, activity.

Our study has some limitations. Because of its cross-sectional design, it is not possible to infer causality of our findings. We chose to use the ActiGraph because despite being developed as a research tool, it is becoming increasingly used in population studies^{24,40} as well as in clinical setting studies.⁴⁹ This device has been validated in populations with COPD, being one of the most accurate in detecting different walking speeds⁶⁸ and esti-mating activity energy expenditure.^{42, @} However, sedentary time has been shown to be more accurately measured with posturalbased accelerometers, such as activPAL.⁷⁰ Also, there are conflicting data regarding the most suitable cutoff point for ActiGraph to measure sedentary time in adult populations, with cutoff points ranging from 25 to 500 CPM. 70-73 It has been suggested that both activity and sedentary parameters can vary gready depending on the cutoff point used.⁷³ The less than 100 CPM cutoff point that we used has been shown to be detrimentally associated with cardiometabolic measures in adults,⁴ and previously reported in large population studies.³⁹ Thus, our prevalence results could be compared with previous estimates in the literature. 41,49,74 In addition, considering the scarce information available on sedentary time in patients with severe asthma, these data provide useful insight into how this behavior is associated with both different spectrums of activity and different disease outcomes. Last, we acknowledge that we have not addressed several comorbidities, such as cardiovascular diseases and musculoskeletal conditions, that may negatively impact on the level of activity and sedentary time or interact with some of the dependent outcomes. This is an area for future research. These conditions, however, are not more prevalent in patients with severe asthma than in a control group,1 and so our study design would account for these issues.

CONCLUSIONS

This study reports novel data on physical activity and sedentary time in patients with severe asthma. We found that severe asthma is associated with lower levels of MVPA. Higher levels of activity and lower levels of sedentary time were linked to better exercise capacity, asthma control, and decreased systemic inflammation. Our results highlight a need to develop and test J ALLERGY CLIN IMMUNOL PRACT MONTH 2017

interventions in patients with severe asthma that aim to improve exercise capacity and systemic inflammation by increasing walking and decreasing sedentary time, and improve asthma control by increasing the volume of MVPA.

REFERENCES

- Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J 2014;43:343-73.
- O'Neill S, Sweeney J, Patterson CC, Menzies-Gow A, Niven R, Mansur AH, et al. The cost of treating severe refractory asthma in the UK: an economic analysis from the British Thoracic Society Difficult Asthma Registry. Thorax 2015;70:376-8.
- McDonald VM, Vertigan AE, Gibson PG. How to set up a severe asthma service. Respirology 2011;16:900-11.
- Gibson P, McDonald VM. Phenotyping asthma and COPD. BRN Rev 2016;2: 239-52.
- World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.
- World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009.
- Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012;380:219-29.
- Owen N, Bauman A, Brown W. Too much sitting: a novel and important predictor of chronic disease risk? Br J Sports Med 2009;43:81-3.
- Katzmarky PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 2009, 41:998-1005.
- Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000;32:S498-504.
- Pate RR, O'Neill JR, Lobelo F. The evolving definition of "sedentary". Exerc Sport Sci Rev 2008;36:173-8.
- Brown WJ, Bauman A, Bull FC, Burton NW. Development of evidence-based physical activity recommendations for adults (18-64 years). Australian Government Department of Health; 2012. Available from: http://www.health. gov.au/internet/main/publishing.nsf/Content/health-publith-strateg-phys-actguidelines/SFiie/DEB-PAR-Adults-18-64years.pdf. Accessed October 20, 2017.
- Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur Respir J 2009;33:262-72.
- Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;171:972-7.
- Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 2014;44:1521-37.
- Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. Thorax 2006;61:772-8.
- Furlanetto KC, Donaria L, Schneider LP, Lopes JR, Ribeiro M, Fernandes KB, et al. Sedentary behavior is an independent predictor of mortality in subjects with COPD. Respir Care 2017;62:579-87.
- Van't Hul AJ, Frouws S, Van Den Akker E, Van Lummel R, Starrenburg-Razenberg A, Van Bruggen A, et al. Decreased physical activity in adults with bronchial asthma. Respir Med 2016;114:72-7.
- Garcia-Aymerich J, Varnso R, Anto JM, Camargo CA Jr. Prospective study of physical activity and risk of asthma exacerbations in older women. Am J Respir Crit Care Med 2009;179:999-1003.
- Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity, and asthma severity in the general US population. J Asthma 2007;44:651-8.
- Lovstrom L, Emtner M, Alving K, Nordvall L, Borres MP, Janson C, et al. High levels of physical activity are associated with poorer asthma control in young females but not in males. Respirology 2016;21:79-87.
- Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, et al. Physical activity, airway resistance and small airway dysfunction in severe asthma. Eur Respir J 2017;49:1601827.
- 23. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016;388:1302-10.

J ALLERGY CLIN IMMUNOL PRACT VOLUME ■, NUMBER ■

- Chau JY, Grurseit AC, Chey T, Stamatakis F, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One 2013;8: e80000.
- Global Initiative for Asthma. Global strategy for asthma management and prevention. Available from: www.ginasthma.org; 2017. Accessed October 20, 2017.
- Juniper EF, O'Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999;14: 902-7.
- Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 2010; 376:803-13.
- Charlson ME, Pompei P, Ales KL, MacKenzie CR, A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83.
- Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361-70.
- Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J 2014; 44:1428-46.
- Juniper EF. Evaluation of impairment of health-related quality of life in asthma: development of a questionnaire for use in clinical trials. Thorax 1992;47:76-83.
- Juniper EF, Guyatt G, Willan A, Griffith LE. Determining a minimal important change in a disease-specific quality of life instrument. J Clin Epidemiol 1994; 47:81-7.
- Juniper EF, Svensson K, Mork AC, Stahl E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire, Respir Med 2005;99:553-8.
- Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-38.
- Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. AmJ Respir Crit Care Med 1999;159:179-87.
- Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011;184: 602-15.
- Gibson PG, Włodarczyk JW, Hensley MJ, Gleeson M, Henry RL, Cripps AW, et al. Epidemiological association of airway inflammation with asthma symptoms and airway hyperesponsiveness in childhood. Am J Respir Crit Care Med 1998;158:36-41.
- Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ. Non-eosinophilic corticosteroid unresponsive asthma, Lancet 1999;353:2213-4.
- Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol 2008;167:875-81.
- Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M, Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008;40:181–8.
- Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J 2011;32:590-7.
- Rabinovich RA, Louvaris Z, Raste Y, Langer D, Van Remoortel H, Giavedoni S, et al. Validity of physical activity monitors during daily life in patients with COPD. Eur Respir J 2013;42:1205-15.
- ActiGraph Software Department AS. ActiLife 6 User's Manual. Pensacola, FL: ActiGraph; 2012. Available from: http://actigraphcorp.com/wp-content/uploads/ 2015/11/SPT12DOC13-ActiLife-6-Users-Manual-Rev-A-110315.pdf. Accessed October 20, 2017.
- Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer, Med Sci Sports Exerc 1998;30:777-81.
- Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 1997;65:12208-88. discussion 9S-31.
- Chen Y, Dales R, Krewski D. Leisure-time energy expenditure in asthmatics and non-asthmatics. Respir Med 2001;95:13-8.
- Ford ES, Heath GW, Mannino DM, Redd SC. Leisure-time physical activity patterns among US adults with asthma. Chest 2003;124:432-7.
- Doggett N, Dogra S. Physical inactivity and television-viewing time among Aboriginal adults with asthma: a cross-sectional analysis of the Aboriginal Peoples Survey. Health Promot Chron Dis Prev Canada 2015;35:54-61.
- Bradley JM, Wilson JJ, Hayes K, Kent L, McDonough S, Tully MA, et al. Sedentary behaviour and physical activity in bronchiectasis: a cross-sectional study. BMC Pulm Med 2015;15:61.
- Troosters T, Sciurba F, Battaglia S, Langer D, Valluri SR, Martino L, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir Med 2010;104:1005-11.

CORDOVA-RIVERA ET AL 9

- Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 2004;34:1-8.
- Watz H, Waschki B, Boehme C, Claussen M, Meyer T, Magnussen H. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study. Am J Respir Crit Care Med 2008;177:743-51.
 Carson KV. Chandratilleke MG. Picot J. Brinn MP. Externain AJ. Smith BJ.
- Crason K.v., Crandradueke MG, Proo J, Brhin MF, External AJ, Smith DJ, Physical training for asthma. Cochrane Database Syst Rev 2013;9:CD0116.
 Franca-Pinto A, Mendes FA, de Carvalho-Pinto RM. Asondi RC, Cukier A.
- Franca-Printo A, Mendes FA, de Carvatho-Printo RM, Agondi RC, Cukker A, Stelmach R, et al. Aerobic training decreases bronchial hyperresponsiveness and systemic inflammation in patients with moderate or severe asfirma: a randomised controlled trial. Thomax 2015;70:732-9.
- Bacon SL, Lemiere C, Moullec G, Ninot G, Pepin V, Lavoie KL. Association between patterns of leisure time physical activity and asthma control in adult patients. BMJ Open Respir Res 2015;2:1-7.
- Pinto-Plata VM, The 6-min walk distance: change over time and value as a predictor of survival in severe COPD, Eur Respir J 2004;23:28-33.
- Spruit MA, Polkey MI, Celli B, Edwards LD, Watkins ML, Pinto-Plata V, et al. Predicting outcomes from 6-minute walk distance in chronic obstructive pulmonary disease. J Am Med Dir Assoc 2012;13:291-7.
- Cote CG, Casanova C, Marin JM, Lopez MV, Pinto-Plata V, de Oca MM, et al. Validation and comparison of reference equations for the 6-min walk distance test, Eur Respir J 2008;31:571-8.
- Celli B, Tetzlaff K, Criner G, Polkey MI, Sciurha F, Casaburi R, et al. The 6-Minute-Walk Distance Test as a chronic obstructive pulmonary disease stratification tool: insights from the COPD Biomarker Qualification Consortium. Am J Respir Crit Care Med 2016;194:1483-93.
- Polkey MJ, Spruit MA, Edwards LD, Watkins ML, Pinto-Plata V, Vestbo J, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med 2013;187:382-6.
- 61. Scott HA, Latham JR, Callister R, Pretto JJ, Baines K, Saltos N, et al. Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Ann Allergy Asthma Immunol 2015;114:470-9.
- Fu JJ, McDonald VM, Baines KJ, Gibson PG. Airway IL-Ibeta and systemic inflammation as predictors of future exacerbation risk in asthma and COPD. Chest 2015;148:618-29.
- Qian FH, Zhang Q, Zhou LF, Liu H, Huang M, Zhang XL, et al. High-sensitivity C-reactive protein: a predicative marker in severe asthma. Respirology 2008;13:664-9.
- Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011;11:607-15.
- Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest 2009;136:1039-46.
- Garcia-Aymerich J, Serra I, Gornez FP, Farrero E, Balcells E, Rodriguez DA, et al. Physical activity and clinical and functional status in COPD. Chest 2009; 136:62-70.
- Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy 2013;43: 36-49.
- Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D, et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012;7:e39198.
- Santos-Lozano A, Santin-Medeiros F, Cardon G, Torres-Luque G, Bailon R, Bergmeir C, et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med 2013;34:975-82.
- Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 2011;43:1561-7.
- Hart TL, McClain JJ, Tudor-Locke C. Controlled and free-living evaluation of objective measures of sedentary and active behaviors. J Phys Act Health 2011;8: 848-57.
- Aguilar-Farias N, Brown WJ, Peeters GM, ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport 2014;17:293-9.
- Gorman E, Hanson HM, Yang PH, Khan KM, Liu-Ambrose T, Ashe MC. Accelerometry analysis of physical activity and sedentary behaviorin older adults: a systematic review and data analysis. Eur Rev Aging Phys Act 2014;11:35–49.
- Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults' sedentary time in population-based studies. Am J Prev Med 2011;41:216-27.

APPENDIX IV: CHAPTER 3 – SUMMARY FROM AAAAI WEBSITE

American Academy of Allergy Asthma & Immunology	Find an Allergist / Immunologist	Search Your Symptoms Ask the Expe	rt Search AAAAI Q SUPPORT THE AAAAI
CONDITIONS & TREATMENTS EDUCATION & TRAINING	PRACTICE RESOURCES	ABOUT AAAAI	DONATE
Home + Global + Latest Research Summaries + New Research time in severe asthma PHYSICAL ACTIVITY AND CLINICAL ASSOCIATIONS	from JACI: In Practice \bullet Physical : SEDENTARY	activity and sedentary TIME IN SEVER	∎ <u>share</u> f ¥ in ⊕ E ASTHMA: KEY
Published online: November 10, 2017			
Severe asthma is a heterogeneous and complex disease, whe common findings. This high symptom burden is likely to have activity and sedentary time that people with severe asthma e recognized risk factors for the development of several chron Additionally, higher levels of activity have been associated w people with mild to moderate asthma. In severe asthma, how been widely studied, nor has the relationship between these outcomes of the disease.	re poor disease control and hea a negative impact on the levels angage in. Inactivity and sedent ic diseases and premature mor <i>i</i> th better asthma clinical outco rever, inactivity and sedentary t behaviours and clinical and bio	ADDITION alth status are s of physical tary time are tality. omes in time have not plogical	IAL INFORMATION A SYMPTOMS, DIAGNOSIS, TREATMENT & EMENT »
In a recently published article in JACI: <i>In Practice</i> , Cordova-f of physical activity and sedentary time in a severe asthma po controls, and examined how these behaviors relate to differe disease such as exercise capacity, airflow limitation, and syst Physical activity and sedentary time were measured for 14 c accelerometer worn on the hip.	Rivera and colleagues character ipulation and in age- and gende ant clinical and biological outco emic and airway eosinophilic in consecutive days using a tri-axia	rized the level r-matched mes of the iflammation. al	
The authors found that the population with severe asthma pr least moderate activity, accumulating 31% fewer steps per d fewer daily minutes of moderate and vigorous physical activi levels of light physical activity (P=0.03). No significant differ authors also found that in severe asthma, higher levels of phr exercise capacity and asthma control as well as lower levels adjusting for sedentary time, which means that despite the ti associated with an improvement in these outcomes.	articipated in significantly lowe ay than controls (P=0.0002), an ity (P<0.0001). However, they h ences were found for sedentar ysical activity were associated of systemic inflammation, even ime spent sedentary, physical a	er levels of at nd almost 50% nad higher y time. The with better after ctivity is still	
Physical activity impairment is prevalent in severe asthma. A time may be a potential nonpharmacological approach in the	ddressing physical inactivity ar management of severe asthma	nd sedentary	
The Journal of Allergy and Clinical Immunology: In Practice i on practical information for the practicing clinician.	s an official journal of the AAA/	Al, focusing	

APPENDIX V: CHAPTER 3 – ANALYSIS OF MOVEMENT BEHAVIOURS

Measurement and analysis of physical activity and sedentary time in the article "Physical activity exercise capacity.in severe asthma: Key clinical association"

Physical activity and sedentary time were assessed using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, Florida), a device widely used in research^{180, 188, 201}, and validated for COPD population²⁰⁷. This is a small device (4.6cm x 3.3cm x 1.5cm) that participants were fitted with to wear on a belt around their waist, positioned over the dominant hip, for 14 consecutive days at the end of the first visit. They were instructed to remove the monitor during water-based activities and to record sleeping time and non-wear periods in a diary (see Appendix X for a copy of the full diary). The ActiGraph measure time-varying changes in force and activity levels typically are recorded as counts, which are then summed over a userspecified time frame, or epoch²⁴⁵. The device was initialised using the ActiLife 6.11.6 Data Analysis Software, to collect raw data (accelerations or counts) in the vertical axis at 30 Hz rate in an epoch length of time of 10-seconds. The monitors were set up to start recording the day of the first visit, at 5:00 PM. After wearing the monitor for 14-days, participants returned to the research facility to undergo the second part of the visit and return the activity monitor. The monitor was then downloaded, and applied the wear time validation proposed by Choi and colleagues²³¹. Since participants wore the monitor for 24 hours, compliance and sleep (nighttime and naps) were estimated from the diaries and visual examination of the ActiGraph data and excluded from the physical activity classification analysis. This was done by creating a digitalised and cross-checked version of the diary log. By undertaking this process I aimed to avoid misclassification of sleeping time as sedentary time. In addition, it allowed me to estimate and extract sleeping time even in if the diary was not fully completed by the participant. This process included the following:

• Data from the diaries given to participants (Appendix IX and picture S-V.I) were digitalised using the ActiLife log diary template (picture S-V.II). This template is in an Excel format, which can be downloaded from the scoring screen of the software and uploaded again into each data file once relevant information has been included. Sleeping time was regarded as "off time" in the log diary template. For instance, picture S-V.II shows data from a fictional participant for the period 26/12/2017 to 27/12/2017. The participant *woke up at 6:00 am* and took the monitor off at *10:00 am for a shower*, and put it on again at *10:15 am*. At *15:00*, the participant had a *30-minute nap*. The participant *went to sleep at 22:00 hrs*. and woke up at *06:00 am of the* following morning.

Picture S-V.I: Screenshot of physical activity diary completed by participants (hardcopy).

N12		Time you wok	e up	:	AM/PM	
9.6	2	Time you wer	t to bed	1	AM/PM	
Were there any p	oints in the d	ay that you to	ok the waist	monitor of	f?	
O No						
O Yes → please	tell us when	you did not we	ear the waist	monitor		
Time taken off	:	AM/PM	Time put o	n again	:	AM/PM
Reason not worn	:			60		
Time taken off	÷	AM/PM	Time put o	n again	:	AM/PM
Reason not worn	-					

H	18 * :	× ✓	<i>fx</i>			
	А	В	С	D	E	F
1	Subject Name	On Date	On Time	Off Date	Off Time	
2	Participant_code	26/12/2017	6:00 AM	26/12/2017	10:00 AM	
3	Participant_code	26/12/2017	10:30 AM	26/12/2017	3:00 PM	
4	Participant_code	26/12/2017	3:30 PM	26/12/2017	10:00 PM	
5	Participant_code	27/12/2017	6:00 AM			
6						
7						
~		0 8				

Picture S-V.II: ActiLife log diary template.

The ActiLife AGD File (Accumulated Device Data) of every participant was visually inspected and contrasted with the data reported in participant's diaries to update the log diary template. The AGD file (picture S-V.III) provides detailed information of the accelerations recorded every 10-seconds epochs. Recorded data from each day and time can be accessed by clicking in the desired day/hour. Times reported in participant's diaries were regarded as the main guide for creating the digitalised Excel templates. However, if there was a mismatch of a few minutes (<30 minutes) between the data reported and that observed in the AGD file, I recorded as the valid time the time observed in the latter one. This process was repeated for every day of recording per participant. In case of missing data on participant's diary (i.e. data not reported for any day/hour in the diary in the presence of available monitor's data), nighttime sleeping time was estimated from the AGD file. Additionally, data from the first day of recording were not logged into the Excel diary template, and thus excluded from the analysis. Data from the last day of recording were also excluded if the monitor recorded for less than 10 hours that day.</p>

GD File Viewer: IBEEP201 (2014-06-16)10sec.agd	angles in	100	and the second	Indiana I	1 303	1001							
Select File] sph downloads checked by MR\HC\IBEEP201 (2014-06-16)10sec.a	gd		2.0.1		tAG	5D							
asic AGD Information		11.1		1	CSV	B Proximity	Expor	t	•				
Vevice Type: wGT3XBT Epoch Length: 10 seconds			100	2									
erial Number: MOS2A08140444 First Epoch: 28/05/2014 5:00 PM		Ax	88						9	Select s	pecific hour		
poch Count: 120960 Last Epoch: 11/06/2014 4:59 PM									1	IZ AM	6 AM	12 PM	6 PM
irmware: 1.1.0 Validated Data: Automatic (13/05/2016)		Jun	e 2014	5					1	ΔΜ	7 AM	1 PM	7 PM
attery: 3.27V	Mon Tu	e Wed 1	'hu Fri	Sat Sun						AM	RAM	2 PM	8 PM
ilter: Normal Number of Axis Enabled: 3		28	29 30	31 1						AM	9 AM	3 PM	Q DM
oftware: ActiLife 6.11.0	2	3 4 0 11	5 6	7 8						LAM	10 AM	4 PM	10 PM
lodes: Axis1, Axis2, Axis3, Steps, Lux, Incline										5 AM	11 AM	5 PM	11 PM
ubject Biometric Information (Edit) View Custom Fields											11 Alm		11 1 1
ubject Name: IBEEP201										Je Pre	evious Hour	Next H	Hour 🔿
ender: Female Date of Birth: 1/05/1985 Limh: Waist													
eight 171cm Age 29 Side Right	Date	Epoch	(Axis 1 (v)	Axis 2 (x)	Axis 3 (z)	Vector Magnitude	Steps	Lux	Inclinometer Of	f (sec)	Inclinomet	er Standir	na (sec)
egneriten Age 25 Ste Agit	2/06/2014	08:17:40	643	152	279	717.2	21	0	0		10		
/eight: 64kg Race: White / Caucasian Dominance: Dominant	2/06/2014	08:17:50	635	160	270	708.3	21	0	0		10		
aily Graphs	2/06/2014	08:18:00	458	157	380	615.5	13	0	0		10		
Graph Axis: Axis 1 🔹 Graph Scale: 15000	2/06/2014	08:18:10	654	123	282	722.8	21	0	0		10		
	2/06/2014	08:18:20	697	140	347	791.1	21	0	0		10		
	2/06/2014	08:18:30	342	122	201	415	13	0	0		10		
	2/06/2014	08:18:40	343	174	331	507.4	14	0	0		10		
	2/06/2014	08-18-50	433	209	344	591.2	12	0	0		10		
	2/06/2014	08-10-00	337	164	212	430.6	13	0	0		10		
	2/06/2014	08-19-10	368	175	240	472.9	14	0	0		10		
	2/06/2014	08-19-20	82	216	290	370.8	3	0	0		10		
To this is a second sec	2/06/2014	08-10-20	69	166	105	207.9	0	0	0		0		
	2/06/2014	08-10-40	558	317	215	714.0	18	0	0		10		
	2/06/2014	09.10.50	102	200	102	222.2	7	0	0		10		
E	2/06/2014	08.20.00	192	200	103	630.3	16	0	0		10		
المستحد والأوليط والأرب والمراجع	2/06/2014	08.20.10	16	24	56	62	1	0	0		10		
	2/06/2014	08.20:10	2	40	40	62.6	-	0	0		0		
	2/06/2014	08.20.20	0	0	40	0	0	0	0		10		
	2/00/2014	00.20:50	v	v	v	U	U	v	U		10		
	2/06/2014	00.00.40	E 2	170	1 2 2	210		0	0		6		

Picture S-V.III: Screenshot of AGD file

 Log diary templates including at least 4 days of recording with at least 10 hours per day (after excluding non-wear time) were uploaded into the device software after the data cleaning process.

ActiLife software was used to score and summarise the data, using the widely used Freedson 1998 algorithm²⁴⁶ and the filter option "use subject log-diary". The output of this analysis was automatically exported into an Excel document, and then into the statistic program.

The Freedson 1998 cut-point²⁴⁶ classifies activity as: Sedentary (0-99 counts per minute [CPM]); Light physical activity (100-1951 CPM); and Moderate and above physical activity (≥1952 CPM).

Additional analyses performed included the application of different cut-points for categorising sedentary time. The issue of the sedentary time cut-point was brought up by one of the reviewers of JACI: In Practice, who was questioning the accuracy of the 0-99 CPM

cut-point for defining sedentary time. Nevertheless, analysing the sedentary time data with different cut-points (<150 and <50 CPM) did not alter the non-significant results between severe asthma healthy controls participants. There is conflicting evidence in the literature regarding alternative sedentary time cut-points. Kozey-Keadle and colleagues²⁰⁹ suggested that a <150 CPM cut-point may be more appropriate to define sedentary behaviour. Indeed, in a later study, the authors recommended a cut-point of 200 CPM using vector magnitude (triaxial accelerometer data). However, these ideas are contradicted by studies suggesting that lower cut-points (<50 CPM) are a better estimate of sitting time^{255, 256}. Due to this lack of consensus, I opted to use the <100 cut-point, so that readers could compare the results of our study with previous estimates in the literature. Additionally, this cut-point has been shown to be detrimentally associated with cardiometabolic measures¹⁸⁸.

APPENDIX VI: CHAPTER 3 - EDITORIAL

Editorial

Challenges for the Clinician: Physical Activity Among Severe Asthmatic Patients with Comorbid Obesity

Sheniz Moonie, PhD, and Mary Beth Hogan, MD Las Vegas, Nev

Asthma and obesity are difficult comorbidities for the clinician to manage. Oral glucocorticosteroid bursts for uncontrolled asthma contribute to obesity, and both diseases limit exercise. To date, findings are limited in the literature regarding the relationship between physical activity status and sedentary behavior among patients with severe asthma. A novel case- control study of 122 participants performed by Cordova-Rivera et al1 investigated physical activity and sedentary time recorded via usage of a triaxial accelerometer (Actigraph, Pensacola, Fla) and pedometer among adults with severe asthma. The results demonstrated that those with severe asthma had higher body mass index (BMI) (30 vs 25; P < .0001), and exercised with less high-intensity activity (19.8 minutes less higher intensity exercise per day; P < .0001) and less steps per day (2,455; P < .0002) compared with control patients.1 Surprisingly, adult patients with asthma increased their time spent in light intensity exercise such as walking (21 minutes more per day; P = .029) with no difference noted in sedentary time compared with controls.1 This finding is unexpected because those with severe asthma are perceived as being more sedentary. Participants with higher activity and reduced sedentary time had associated improved exercise capacity (6-minute walk test), asthma control, and lower inflammation (C-reactive protein). This study suggests that improving the ability to exercise of those with severe asthma either by time or intensity could result in improved asthma parameters while possibly addressing obesity.1

A novel aspect of this article was the use of a wearable accelerometer to measure exercise intensity among participants with severe asthma. By determining exercise intensity, Cordova-Rivera et al¹ addressed a limitation inherent in other studies, such as that performed by Bian et al,² which tracked both sleep and physical activity via a pedometer (FitBit, Boston, Mass) in adolescents with asthma. The combination of these measurements demonstrates that those with severe asthma are not performing high-intensity activity but are willing to walk. They attempt to increase their time in light exercise to achieve exercise goals. This suggests that clinicians could help each comorbid

2213-2198

condition by more aggressively treating exercise symptoms to achieve higher intensity exercise activities, setting specific goals for walking (eg, longer periods of walking time), or to achieve specific higher step counts (10,000 steps/d are recommended for a healthy lifestyle).³ Assessing exercise strategies among these comorbid patients would be an important area of future investigation for improving both BMI/metabolic status and exercise capacity simultaneously.

This issue does have implications for our commitment to asthma management. In 2014, Seggev et al⁴ documented that patients with asthma aged 0 to 17 years in Southern Nevada required significantly more emergency department use than did adults; and pediatric patients also required more hospitalizations and primary care visits than did adults with asthma.⁴ Regardless of age, asthma costs in the United States were approximately \$56 billion, with costs per patient with asthma at \$3,259 in 2007.^{5,6} The comorbidity of asthma and obesity is a critical focus because children and adults with asthma tend to reduce activity because of concerns of experiencing exercise-induced bronchospasm, and, as such, may drive higher costs for medical care and experience a sign of asthma control, and exercise itself in this study was linked to improved asthma control.

Lack of exercise coupled with rescue oral corticosteroid use may make weight management a challenge.8 Multiple studies indicate that the risk of developing obesity during childhood and adolescence is increased for children with asthma, who are 51% more likely to become obese over the next decade compared with children without asthma.9 This suggests a need to start these studies earlier in life with children, as well as with adult populations such as in the study by Cordova-Rivera et al. A previous study showed that as asthma severity worsens, physician adherence to prescribing based on National Heart, Lung, and Blood Institute guidelines also worsened.¹⁰ This clinical disconnect may also result in unaddressed exercise-induced bronchospasm symptom control with long-term consequences of obesity development and uncontrolled asthma. Cordova-Rivera et al's novel article suggests that it may be desirable to research the factors influencing the individual patient's decision of how they want to exercise, with a goal of both improving lung function and reducing obesity. Specific strategies to overcome these patients' lack of desire to exercise, as well as examining issues such as perception of activity during employment time affecting home exercise goals, require further investigation. Tackling the comorbidities simultaneously through exercise may result in improvement in both asthma and obesity.

Optimistically, the study woted that extra time spent in active pursuits could pay health dividends for their patients. In keeping track of step counts, those with asthma with the highest number

University of Nevada, Las Vegas, Nev

Conflicts of interest: The authors declare that they have no relevant conflicts of interest.

Received for publication November 29, 2017; accepted for publication November 30, 2017.

Corresponding author: Sheniz Moonie, PhD, School of Community Health Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154. E-mail: sheniz.moonie@unlv.edu.

J Allergy Clin Immunol Pract 2018;6:823-4.

^{© 2018} American Academy of Allergy, Asthma & Immunology https://doi.org/10.1016/j.jaip.2017.11.036

824 MOONIE AND HOGAN

of steps per day had better exercise capacity as measured by a 6-minute walk distance (6MWD; 499 m vs 616 m; P < .001). Each additional 1,000 steps per day in Cordova-Rivera et al's study resulted in a 16.9-m increase in the 6MWD.1 Conversely, the authors were able to note that a value of 500 m gained on the 6MWD could identify individuals engaging in desired amounts of physical activity and were 6 times more likely to engage in the recommended levels of moderate activity of at least 30 min/d. This could suggest a way forward for these patients, as for every 10-minute increase in moderate activity there was an associated improvement in asthma control, with increasing gains for longer periods of moderate physical activity. This has also been noted recently by other investigators of obesity and severe asthma.¹¹ Of note, there are no current 6MWD recommendations specifically for those with asthma, but a distance of less than 350 m is considered poor for patients with chronic obstructive pulmonary disease.

More studies are needed for specific recommendations for the population with severe asthma for achievable targets to be made. This is a point where future investigation may translate to improved therapeutic goals for clinicians treating those with severe asthma. For instance, there may be a benefit to obtaining a 6MWD for those with severe asthma as a goal-driven way to determine a patient's current exercise capability and target areas of improvement in exercise. Disappointingly, those with severe asthma using a pedometer achieved 5362 daily steps, only half the recommended level.¹ The authors surmised that this population needed coaching to increase steps by more than 4000 steps per day or 25 minutes of moderate exercise per day.

Further studies for exercise and the comorbidities of obesity and asthma need to address the following: (1) does exercise have the capability to improve asthma inflammation/control while improving chances of a lower BMI? (2) is obesity a limiting factor for exercise intensity itself? and (3) what is the best way to improve exercise among those with severe asthma (exercise type/length/ pharmacologically) to achieve improved lung function and asthma control. In addition, the authors found that the study population had more depression and anxiety than controls. This may have been a confounding factor for why those with severe asthma exercised less than controls, possibly experiencing anxiety regarding disease exacerbation or depression that may have impaired completion of exercise. As such, the potential interplay between asthma, exercise, anxiety, and depression requires further study.¹²

Overall, a novel use of exercise technology provided multiple possible avenues for future study and improvement of comorbid J ALLERGY CLIN IMMUNOL PRACT MAY/JUNE 2018

asthma and obesity. Take home points for the clinician: our patients with severe asthma with obesity as a comorbidity are not exercising intensively enough to improve both conditions; they are however willing to do light exercise for longer periods of time, but this does not sufficiently replace the potential gains from moderately to highly intensive activity. This suggests a 2pronged approach for our patients: to clinically address exercise symptoms better, and coach our patients more (step goals, distance goals, length and intensity of exercise) to improve asthma control. The goals may need to be adjusted such that as asthma improves, exercise goals are reset accordingly. It is important to continue investigation of how to encourage exercise to improve asthma and obesity outcomes among patients with severe asthma.

REFERENCES

- Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, Mcdonald VM. Physical activity and exercise capacity in severe asthma: key clinical associations. J Allergy Clin Immunol Pract 2018;6:814-22.
- Bian J, Guo Y, Xie M, Parish AE, Wardlaw I, Brown R, et al. Exploring the association between self-reported asthma impact and Fitbit-derived sleep quality and physical activity measures in adolescents. JMIR mHealth uHealth 2017;5: e105.
- Swartz AM, Strath SJ, Bassett DR, Moore JB, Redwine BA, Groër M, et al. Increasing daily walking improves glucose tolerance in overweight women. Prev Med (Baltim) 2003;37:356-62.
- Seggev JS, Moonie S, Guillermo CJ. Trends in asthma healthcare utilization in Southern Nevada. J Allergy Clin Immunol 2011;127:AB156.
- Smith M, Robinson L. Curbing weight problems and obesity in children. 2017. Available from: https://www.helpguide.org/articles/diets/childhood-obesityand-weight-problems.htm. Accessed November 19, 2017.
- Gruber KJ, Haldeman LA. Using the family to combat childhood and adult obesity. Prev Chronic Dis 2009;6:A106.
- Teramoto M, Moonie S. Physical activity participation among adult Nevadans with self-reported asthma. J Asthma 2011;48:517-22.
- Lucas JA, Moonie S, Olsen-Wilson K, Hogan MB. Asthma, allergy, and obesity: examining the relationship among Nevada children. J Asthma 2017;54: 594-9.
- Nevada Statewide Asthma Coalition. Nevada Statewide Asthma Control Plan 2015-2018. 2015. Available from: https://positivelykidsblog.files.wordpress. com/2016/04/asthma-plan-12_17_14.pdf. Accessed November 19, 2017.
- Moonie SA, Strunk RC, Crocker S, Curtis V, Schechtman K, Castro M. Community Asthma Program improves appropriate prescribing in moderate to severe asthma. J Asthma 2005;42:281-9.
- Türk Y, van Huisstede A, Franssen FME, Hiemstra PS, Rudolphus A, Taube C, et al. Effect of an outpatient pulmonary rehabilitation program on exercise tolerance and asthma control in obese asthma patients. J Cardiopulm Rehabil Prev 2017;37:214-22.
- Trevor JL, Bhatt SP, Wells JM, Kirkpatrick d, Schumann C, Hitchcock J, et al. Benefits of completing pulmonary rehabilitation in patients with asthma. J Asthma 2015;52:969-73.

APPENDIX VII: CHAPTER 4 – PUBLISHED ARTICLE

Respirology

ORIGINAL ARTICLE

Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD

LAURA CORDOVA-RIVERA,^{1,2,3} PETER G. GIBSON,^{1,2,3,4} PAUL A. GARDINER^{5,6} AND VANESSA M. MCDONALD^{1,2,3,4}

¹National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia; ²Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; ³Hunter Medical Research Institute, Newcastle, NSW, Australia; ⁴Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia; ⁵Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia; ⁶Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia;

ABSTRACT

Background and objective: Physical activity (PA) in obstructive airway diseases (OAD) is likely to be impaired but this has not been extensively studied outside of chronic obstructive pulmonary disease (COPD). We describe PA levels in severe asthma and bronchiectasis compared to moderate-severe COPD and to controls, and tested the cross-sectional associations of PA (steps/day) with shared disease characteristics in the OAD group.

Methods: Adults with OAD (severe asthma = 62, COPD = 67, bronchiectasis = 60) and controls (n = 63) underwent a multidimensional assessment, including device-measured PA levels.

Results: The OAD group included 189 participants (58.7% females), with median (interquartile range) age of 67 (58-72) years and mean forced expiratory volume in the first second (FEV1) % predicted of 69.4%. Demographic characteristics differed between groups. Compared to controls (52.4% females, aged 55 (34-64) years, median 7640 steps/day), those with severe asthma, bronchiectasis and COPD accumulated less steps/day: median difference of -2255, -2289, and -4782, respectively ($P \le 0.001$). Compared to COPD, severe asthma and bronchiectasis participants accumulated more steps/day: median difference of 2375 and 2341, respectively ($P \le 0.001$). No significant differences were found between the severe asthma and bronchiectasis group. Exercise capacity, FEV1% predicted, dyspnoea and systemic inflammation differed between groups, but were each significantly associated with steps/day in OAD. In the multivariable model adjusted for all disease characteristics, exercise capacity and FEV1% predicted remained significantly associated.

Conclusion: PA impairment is common in OAD. The activity level was associated with shared characteristics

© 2018 Asian Pacific Society of Respirology

SUMMARY AT A GLANCE

This is the first study characterizing and comparing the prevalence of physical activity (PA) between a severe asthma, bronchiectasis, chronic obstructive pulmonary disease (COPD) and a control population; and in testing the associations of key treatable and shared disease characteristics with the level of PA in obstructive airway diseases.

of these diseases. Interventions to improve PA should be multifactorial and consider the level of impairment and the associated characteristics.

Key words: accelerometry, asthma, bronchiectasis, chronic obstructive pulmonary disease, motor activity.

INTRODUCTION

Asthma, chronic obstructive pulmonary disease (COPD) and bronchiectasis are obstructive airway diseases (OAD) that cause significant burden to individuals and health systems.¹

Whilst these conditions have different pathophysiological processes,² there are commonalities. They are all chronic conditions affecting the lower respiratory airways^{1,3} and share similar clinical characteristics. Additionally, exacerbations are common, increasing the disease burden.¹ These shared characteristics may challenge the person's ability to perform daily activities and often lead to deconditioning and poor health status.

It is well established that individuals with COPD are considerably less active than without respiratory disease,⁴⁻⁶ and that the degree of physical activity (PA) is associated with important disease outcomes.⁷ The focus in COPD now is to develop and test interventions that improve PA and decrease sedentary time.^{8,9} In severe asthma and bronchiectasis, however, there has been little research that objectively characterizes these behaviours, or that have focused on interventions to improve them.¹⁰ To develop such interventions, data

> Respirology (2018) doi: 10.1111/resp.13428

Correspondence: Vanessa M. McDonald, Priority Research Centre for Healthy Lungs, The University of Newcastle, Level 2 West Wing, 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia. Email: vanessa. mcdonald@newcastle.edu.au Received 20 May 2018; invited to revise 5 July 2018; revised

Received 20 May 2018; invited to revise 5 July 2018; revised 31 July 2018; accepted 23 September 2018 (Associate Editor: Frits Franssen; Senior Editor: Paul King).

2

characterizing PA are needed. Furthermore, the extent to which PA impairment is associated with shared clinical and biological characteristics in OAD populations is also unknown. Understanding these similarities and differences is important, in order to develop targeted interventions.

We have previously reported11,12 that patients with severe asthma have lower PA levels compared to controls, and that this behaviour is associated with important disease outcomes. In the present study, we aimed to characterize the degree and intensity of PA in patients with severe asthma and bronchiectasis, compared to patients with moderate-severe COPD and to individuals without respiratory disease. In addition, we sought to understand whether the PA impairment likely to be found in OAD is associated with shared disease characteristics. We hypothesized that participants with severe asthma and bronchiectasis would engage in more PA than participants with COPD, but in lower activity levels than controls. Additionally, we hypothesized that in the OAD group, PA would be associated with characteristics shared by the three diseases.

METHODS

Adults (\geq 18 years) with and without respiratory disease were recruited between March 2014 and June 2017 to a cross-sectional study that included measurement of PA.

Participants with physician-diagnosed severe asthma,¹³ bronchiectasis¹⁴ or moderate-severe COPD¹⁵ were recruited via the respiratory clinics at John Hunter Hospital (Newcastle, Australia), and the research databases of the Department of Respiratory and Sleep Medicine, John Hunter Hospital, and the Hunter Medical Research Institute (HMRI). Controls were recruited via the research database of the HMRI. Participants were required to be without exacerbation within the 4 weeks prior the study visits. Detailed inclusion and exclusion criteria are described in Appendix S1 (Supplementary Information).

Ethics approval was granted from the Human Research Ethics Committees of the Hunter New England Local Health District (severe asthma, bronchiectasis, and controls ((08/08/20/3.10); COPD (12/12/12/3.06)) and the University of Newcastle. The study was conducted according to Good Clinical Practice Guidelines and each participant provided written informed consent.

Measurements

Participants underwent a multidimensional assessment³ involving measures of body mass index (BMI), comorbidities,¹⁶ exacerbations, respiratory health status¹⁷ and smoking status. Further assessments included:

Exercise capacity

The 6-minute walk test (6MWT) was performed according to current guidelines.¹⁸ The predicted 6-minute walk distance (6MWD) was calculated.¹⁹

.

Airflow limitation

Spirometry was used to measure post-bronchodilator forced expiratory volume in the first second (FEV₁), forced vital capacity (FVC) and FEV₁/FVC ratio (Medgraphics, CPFS/D USB Spirometer, BreezeSuite v7.1, MGC Diagnostics, Saint Paul, MN, USA). Predicted values were calculated using NHANES III reference equations.²⁰

L Cordova-Rivera et al.

Dyspnoea

Scores ≥ 2 from the modified Medical Research Council (mMRC) Dyspnoea Scale²¹ defined positive presence of dyspnoea. This cut-off value is associated with higher risk of mortality in COPD.²²

Airway inflammation

Eosinophil and neutrophil counts were obtained from induced sputum samples using nebulized 4.5% saline or 0.9% saline according to $FEV_{1.}^{23}$ Lower respiratory sputum portions were selected, dispersed, and total cell counts and cell viability performed, followed by preparation of cytospins and differential cell counts using May-Grunwald-Giemsa.

Systemic inflammation

High-sensitivity C-reactive protein (hs-CRP) was measured in peripheral blood, and analysed using enzymelinked immunosorbent assay.

Physical activity

PA data were obtained from accelerations detected in the vertical axis using the ActiGraph wGT3X-BT (ActiGraph, Pensacola, FL, USA) accelerometer. The device was initialized²⁴ to collect accelerations at 30 Hz rate in epochs of 10 s. Participants wore the monitor for 14 consecutive days on a belt around their waist over the dominant hip, and removed the monitor during water-based activities. Data were summarized using the ActiLife 6.11.6 Data Analysis Software (ActiGraph)²⁴ and were considered valid if there were ≥ 4 days of recordings, with ≥ 10 h of recording/day.²⁵ Non-wear time was removed²⁶ from the analysis. Moderate and vigorous PA (MVPA) was categorized according to the Freedson 1998 cut-off point²⁷ (MVPA \geq 1952 counts/min).

For PA levels, we reported the average steps/day and the mean min/day in MVPA. For the diseases outcomes analysis, we reported steps/day, as it is an output easy to compare and that could be used as a motivational and informative tool for patients and clinicians.²⁸

Statistical analysis

Data were analysed using STATA 13 (Stata Corp., College Station, TX, USA). Differences between the severe asthma, bronchiectasis, COPD and the control groups were assessed using one-way analysis of variance, Kruskal-Wallis or chi-square test as appropriate.

Analyses of the associations between PA and shared disease characteristics were performed by disease and in the combined diseases group (OAD group). The

Physical activity in airway diseases

associations between PA (dependant variable), disease characteristics (independent variables: 6MWD, FEV₁% predicted, dyspnoea score \geq 2, hs-CRP, sputum eosinophils and sputum neutrophils) and potential confounders (current smoking and BMI) were separately estimated in the OAD group using simple linear regression analysis against steps/day. Confounders (BMI) and each independent variable with a *P*-value of <0.2 (6MWD, FEV₁% predicted, dyspnoea, sputum eosinophils and hs-CRP) were included into separate linear regression analyses to identify variables associated with PA. Age and sex were included in all models as biological confounders.

We tested the interaction effects between diagnosis and each independent variables on steps/day (Table S1, Supplementary Information). A final model including all the independent variables was used to identify independent associations with PA in the OAD group. The association between exacerbation and PA was also tested in simple linear regression analyses (Appendix S2, Table S2, Supplementary Information). Assumptions for linear regressions were met. Based on the observed effect size in the final regression model ($f^2 = 0.916$, adjusted $R^2 = 0.4782$, $\alpha = 0.05$), the study has 100% power to detect the effect. Spearman's rank correlation tested relationships between steps/day and disease outcomes. A *P*-value of <0.05 was considered statistically significant.

completed the study and 252 (severe asthma = 62, bronchiectasis = 60, COPD = 67 and controls = 63) were included in the analysis. Reasons for exclusion were: invalid accelerometer data (severe asthma = 8, bronchiectasis = 5, COPD = 4, controls = 5), not fulfilling the inclusion criteria after assessment (severe asthma = 5, bronchiectasis = 2, controls = 3) or inability to complete all assessments (COPD = 12).

The clinical characteristics of each group differed (Tables 1–2). As expected, the disease groups had worse clinical/biological characteristics than controls. The severe asthma and COPD groups had higher BMI, and both the bronchiectasis and COPD groups were older than controls. Participants were treated according to current guidelines.^{13,15}

Characterization of PA

Compared to controls, the severe asthma and bronchiectasis groups had lower PA, with a median difference of around 2270 less steps/day (P < 0.001 both), and a median of 19.7 (P = 0.006) and 26.5 (P < 0.0001) less min/day of MVPA, respectively. Compared to COPD, the severe asthma and bronchiectasis groups had higher PA levels, with a median of 2374 and 2341 more steps/day (P < 0.0001 both), and a median of 13.6 (P < 0.0001) and 6.8 (P = 0.0024) more min/day of MVPA (Fig. 1). No significant differences were observed between the severe asthma and bronchiectasis population.

RESULTS

A total of 296 participants (severe asthma = 75, bronchiectasis = 67, COPD = 83 and controls = 71)

Characteristics associated with PA in OAD

After adjustment for significant confounders, 6MWD, $\rm FEV_1\%$ predicted, dyspnoea, sputum eosinophils% and

Table 1 Demographics and clinical characteristics of participants

	SA [†] (<i>n</i> = 62)	BE [†] (<i>n</i> = 60)	COPD [‡] (<i>n</i> = 67)	Control [§] (<i>n</i> = 63)	<i>P</i> -value [¶]	OAD (n = 189)
Age (years)	58.0 (43.0-68.0)**	68.0 (62.0-73.0)*§	70.0 (64.0-75.0)§	55.0 (34.0-64.0)	<0.0001	67.0 (58.0-72.0)
Females (%)	51.6	86.7***	38.8	52.4	<0.001	58.7
BMI (kg/m ²)	28.6 (24.6-33.7)*§	25.6 (21.7-27.6) ^{†‡}	30.1 (26.9-33.5)8	25.3 (22.3-27.6)	<0.0001	27.7 (23.8-31.6)
Years since diagnosis	27.6 (15.1-51.0)	16.0 (5.0-57.0)	6.0 (3.0-14.0)	N/A		14.6 (5.0-41.0)
Current smoker (%)	8.1	1.7	0.0	0.0	0.031	3.2
Smoking pack/years	0.0 (0.0-5.4) [‡]	0.0 (0.0-2.1) [‡]	42.6 (31.3-70.5) [§]	0.0 (0.0-3.0)	<0.0001	5.0 (0-36.0)
CCI score \geq 1 (%)	27.9	35.0	100.0	3.17	<0.001	55.9
Medication (% participant prescribed)						
ocs	40.3	3.0	3.0	0.0		15.0
Combination ICS/LABA	97.0	63.3	70.2	0.0		77.0
ICS	13.0	5.0	16.4	0.0		12.0
LAMA	52.0	38.3	91.0	0.0		61.4
LABA	0.0	2.0	16.4	0.0		6.4
Omalizumab	11.3	N/A	N/A	N/A		3.7
Mepolizumab	6.5	N/A	N/A	N/A		2.1

Results reported as median (interquartile range) or percentage. OAD group not included in the hypothesis tests.

Results with statistically significant between-group differences: (†) between SA and BE groups, (‡) with COPD group, (§) with Control group.

¹P-value correspond to the differences within group (COPD, SA, BE and controls). Statistically significant results are in bold.

BE, bronchiectasis; CCI, Charlson Co-morbidity Index; ICS, inhaled corticosteroid; LABA, long-acting beta agonist; LAMA, long-acting muscarinic antagonist; OAD, obstructive airway disease; OCS, oral corticosteroid; SA, severe asthma.

Respirology (2018)

© 2018 Asian Pacific Society of Respirology

	SA [†] (<i>n</i> = 62)	BE [†] (<i>n</i> = 60)	$COPD^{\ddagger}$ ($n = 67$)	Control§ ($n = 63$)	P-value ¹	0AD (<i>n</i> = 189)
Post FEV1 (% predicted)	75.8 (70.4, 81.3) ^{‡§}	76.9 (70.9, 82.8) ^{‡§}	56.4 (52.5, 60.3) [§]	100.6 (96.7, 104.5)	<0.001	69.4 (66.2, 72.5)
Post FVC (% predicted)	87.5 (83.1, 91.8) ^{‡§}	81.1 (76.3, 86.0) [§]	78.7 (74.6, 82.7) ^{\$}	96.6 (93.2, 100.1)	<0.001	82.3 (79.7, 84.9)
Post FEV ₁ /FVC ratio	0.66 (0.56-0.77) ^{‡§}	0.73 (0.65-0.79) ^{‡§}	0.56 (0.44–0.67) [§]	0.82 (0.77-0.86)	<0.001	0.66 (0.55-0.76)
6MWD (m)	477.8 (452.0, 503.5) ^{‡§}	453.4 (424.2, 482.6) ^{‡§}	383.5 (353.5, 413.6) [§]	609.5 (589.0, 629.9)	<0.001	435.9(418.6, 453.1)
6MWD (% predicted)	72.1 (64.7–82.6) [§]	76.6 (62.9–82.0) ^{‡§}	66.0 (46.9–77.2) [§]	86.8 (77.9–92.7)	<0.001	70.9 (59.1-80.1)
Dyspnoea score ≥ 2 (%)	50.0 [§]	32.0 ^{†‡§}	53.0 [§]	0.0	<0.001	45.2
GOLD quadrant (%)	N/A	N/A	B = 17.9; C = 4.5; D = 76.1	N/A		N/A
GOLD stage (%)	N/A	N/A	2 = 64.2; $3 = 30.0$; $4 = 6.0$	N/A		N/A
Oxygen dependent (%)	0	3.3	3.8	0	<0.001	2.6
Severe exacerbation (n)	190 [‡]	18 ^{†‡}	44	0	<0.001	
SGRQ score	41.2 (27.5–55.1) [‡]	36.0 (23.8-52.5) [‡]	50.3 (39.5–66.6)	N/A	<0.001	45.2 (32–58)
hs-CRP (mg/L)	1.8 (1.0–6.0) [§]	2.8 (1.4–7.0) [§]	3.8 (1.9–10.0) [§]	1.1 (0.6–2.5)	<0.001	2.9 (1.4-7.8)
Eosinophils (%)	3.6 (0.8–13.5) ^{†§}	1.3 (0.6–2.1) ^{†\$}	1.8 (0.75–3.8) [§]	0.45 (0.0–1.0)	<0.0001	1.5 (0.75-4)
Neutrophils (%)	35.0 (17.8–59.3) [†]	78.1 (61.3–85.3) ^{†‡§}	48.8 (29.5–71.8) [§]	27.3 (15.5-42.8)	<0.0001	53.3 (28.5-79.3)

Statistically significant between-group differences results: (†) between SA and BE groups, (\$) with COPD group, (\$) with Control group. ¹P-value correspond to the differences within group (COPD, SA, BE and controls). Statistically significant results are in bold. 6MWD, 6-min walk distance; BE, bronchiectasis; FEV,, forced expiratory volume in the first second; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; hs-CRP, high-sensitivity C-reactive protein; OAD, obstructive airway disease; SA, severe asthma; severe exacerbation, total number in last year as per SA and GOLD guidelines definitions (BE as per GOLD guidelines); SGR0, St George Respiratory Ouestionnaire.

L Cordova-Rivera et al.

4

Respirology (2018)

Figure 1 PA comparison for steps/day [median (IQR)] (SA: 5385 (3941–7844), BE: 5351 (3522–7834), COPD: 2858 (1754–5146), controls: 7640 (6123–10 583)) (A) and MVPA (SA: 22.3 (13.3–35), BE: 15.5 (7.5–29.8), COPD: 8.7 (2.8–18.1), controls: 42.0 (29.4–66)) (B). BE, bron-chiectasis; controls, adults with no respiratory disease; MVPA, moderate and vigorous PA; PA, physical activity; SA, severe asthma. SA (\bullet) n = 62, BE (\bullet) n = 60, COPD (\blacksquare) n = 67, controls (\blacktriangle) n = 63.

	Table 3	Associations of	f physica	l activit	y in OAD
--	---------	-----------------	-----------	-----------	----------

Concrete models for clinical and	lay with disease characteristics in OAD			
biological outcomes	Coefficient (95% CI)	Significance	Adjusted R ²	
6MWD (m)	15.10 (12.10, 18.10)	<0.001	0.433	
FEV ₁ (% predicted)	52.62 (34.99, 70.25)	<0.001	0.153	
Dyspnoea (≥2 score)	-1689.4 (-2476, -902.1)	<0.001	0.204	
Reference: ≤1 scores				
hs-CRP (mg/L)	-36.96 (-61.35, -12.56)	0.003	0.190	
Eosinophils (%)	50.25 (0.40, 100.11)	0.048	0.161	
Full model	Independent associations of steps/day in OAD		Adjusted R ² = 0.478	
6MWD (m)	12.40 (8.51, 16.28)	<0.001		
FEV ₁ (% predicted)	18.96 (0.53, 37.40)	0.044		
Dyspnoea (≥2 score)	-42.40 (-813.95, 729.16)	0.914		
hs-CRP (mg/L)	0.69 (-20.33, 21.71)	0.948		
Eosinophils (%)	25.88 (-14.49, 66.24)	0.207		
BMI (kg/m ²)	-54.15 (-104.05, -4.26)	0.034		
Age	-27.74 (-55.3, -0.19)	0.048		

Each model adjusted for confounders: age, gender and BMI (except FEV₁% predicted). Dyspnoea was transformed into a binary variable and considered positive when scores were ≥ 2. Confounders (BMI, age and sex) explained 13% of the variance in steps/day in the full model. Sex not significant in the full model. Statistically significant results are in bold.

6MWD, 6-min walk distance; FEV1, forced expiratory volume in the first second; hs-CRP, high-sensitivity C-reactive protein; OAD, obstructive airway disease.

hs-CRP were all associated with steps/day in the combined OAD group (Table 3). Regression models by disease (Table 4) show a similar pattern, as indicated by overlapping CI in forest plots (Fig. S1, Supplementary Information). No statistically significant interactions for diagnosis were found between the independent variables and steps/day (Table S1, Supplementary Information). The correlations between some measured outcomes and steps/day are shown in Figure 2. The 6MWD had the strongest correlation with PA, and the regression model explained 43% of the adjusted variance in steps/day. Every 100-m increase in exercise capacity was associated with an increase of 1500 steps/ day. Dyspnoea, airflow limitation (AFL), systemic inflammation and sputum eosinophils were weaker

Respirology (2018)

associations of PA, but statistically significant nonetheless. Associations between disease outcomes and MVPA are reported in Table S3 (Supplementary Information).

The full regression model shows that better exercise capacity and lung function remained independently and positively associated with PA in OAD (Table 3). Dyspnoea, hs-CRP and sputum eosinophils were no longer significant. The full model explained 48% of the variance in steps/day in OAD.

DISCUSSION

In this study, we characterized the level of PA in a group of patients with severe asthma and

© 2018 Asian Pacific Society of Respirology

L Cordova-Rivera et al.

Table 4 Regression models of associations of disease characteristics with steps/day by diagnosis

	Associations of steps/day	with disease outcomes b	y disease
	Coefficient (95% CI)	Significance	Adjusted R ²
6MWD (m)			
Severe asthma	12.76 (6.27, 19.26)	<0.001	0.259
COPD	12.01 (7.63, 16.39)	<0.001	0.485
Bronchiectasis	17.37 (12.26, 22.47)	<0.001	0.503
FEV ₁ (% predicted)			
Severe asthma	33.71 (2.04, 65.38)	0.037	0.060
COPD	46.20 (4.52, 87.88)	0.030	0.055
Bronchiectasis	45.52 (15.77, 75.27)	<0.01	0.124
Dyspnoea (≥2 score) (vs scores ≤ 1)			
Severe asthma	-1534.53 (-2966.27, -102.80)	0.036	0.129
COPD	-1310.93 (-2536.58, -85.28)	0.036	0.286
Bronchiectasis	-2270.94 (-3710.32, -831.56)	0.003	0.213
hs-CRP (mg/L)			
Severe asthma	-45.82 (-84.92, -6.72)	0.022	0.153
COPD	-15.52 (-52.71, 21.67)	0.407	0.243
Bronchiectasis	-84.34 (-132.33, -36.35)	<0.001	0.279
Eosinophils (%)			
Severe asthma	87.87 (16.34, 159.40)	0.017	0.124
COPD	22.99 (-50.20, 96.18)	0.532	0.239
Bronchiectasis	-113.40 (-351.35, 124.55)	0.343	0.103

Models adjusted for confounders: age, sex and BMI (except FEV₁% predicted). Dyspnoea was transformed into a binary variable and considered positive when scores were \geq 2. Statistically significant results are in bold.

6MWD, 6-min walk distance; FEV₁, forced expiratory volume in the first second; hs-CRP, high-sensitivity C-reactive protein; OAD, obstructive airway disease.

bronchiectasis, compared to moderate-severe COPD and controls. For the first time, we have shown that patients with both severe asthma and bronchiectasis engage in lower levels of PA than individuals without respiratory disease, but higher levels compared to patients with moderate-severe COPD. The intensity and volume of activity were similar in the severe asthma and bronchiectasis groups, and the degree of PA impairment in OAD could be explained in an important proportion by exercise capacity and AFL.

We aimed to characterize and compare the level of PA impairment in different OAD. A robust body of research exists in COPD, highlighting that PA is markedly decreased,⁷ and that this decrease is strongly associated with exacerbations and mortality.^{7,29,30} As such, the promotion of PA in COPD is an important component of disease management,⁹ and a desirable indirect outcome of pulmonary rehabilitation.^{9,31}

Whilst the degree of physical inactivity and its impact is well established in COPD, in severe asthma and bronchiectasis, there is a paucity of research that characterizes this important and modifiable risk-factor, that makes comparisons to disease groups with similar characteristics or that has described the clinical associations of PA in these conditions. This is important in order to generate an evidence base that can guide the direction of treatment interventions for severe asthma and bronchiectasis. Extrapolating what is known in COPD to these conditions. In an era of personalized medicine, this new knowledge will help design individualized treatment programmes.

Our severe asthma and bronchiectasis populations moved a median of 5360 steps/day each, resulting in a

© 2018 Asian Pacific Society of Respirology

median difference of 2350 more steps compared to our COPD population. Previous studies conducted in severe asthma³² and bronchiectasis³³ have reported a median of approximately 6000 steps/day, which is consistent with our results. When compared with severe asthma, our bronchiectasis population also accumulated fewer minutes of MVPA, although not statistically significant. These differences were explained by the fact that our bronchiectasis participants were mostly females, a trend previously reported.³⁴ Overall, our data confirm that PA impairment exists in severe asthma and bronchiectasis, but to a lesser degree than in COPD.

Whilst we highlight the importance of characterizing these behaviours in specific disease groups, we also combined the disease populations to identify if shared clinical characteristics of OAD are associated with PA. In the recently proposed 'treatable traits' management approach,³⁵ deconditioning was proposed as an extrapulmonary trait to be addressed. We suggest that PA itself is a trait to be targeted, and we report that this occurs albeit to different degrees across diagnosis groups. These groups also shared clinical and biological features that were all associated with PA impairment. Therefore, we have identified potential treatment targets that might address the physical inactivity trait, not only in COPD but also in severe asthma and bronchiectasis.

The 6MWD explained the highest proportion of variance in steps/day in the OAD group. This test has been endorsed as a valid outcome measure in patients with chronic respiratory disease to measure functional exercise capacity,¹⁸ and is an important predictor of COPD

Respirology (2018)

7

Physical activity in airway diseases

Figure 2 Pearson's correlation of physical activity (steps/day) with 6MWT (r: 0.72, P < 0.0001) (A), FEV₁% predicted (r: 0.426, P < 0.0001) (B), hs-CRP (r: -0.286, P < 0.0001) (C) and sputum eosinophils % (r: 0.088, P = 0.264) (D). O, SA; \triangle , BE; \Box , COPD. 6MWD, 6-min walk distance; 6MWT, 6-min walk test; BE, bronchiectasis; FEV₁ (% predicted), percentage predicted of forced expiratory volume in the first second; hs-CRP, high-sensitivity C-reactive protein; SA, severe asthma. hs-CRP and eosinophils % transformed to natural logarithm.

mortality.^{36,37} Despite being widely used in COPD and increasingly validated in bronchiectasis,³⁸ it is not routinely recommended in severe asthma¹³ and, thus, assessment of functional exercise capacity in severe asthma is scarce.³⁹ The reasons for its underuse may relate to fear of provoking exercise-induced bronchoconstriction, or that 'uncontrolled asthma' is listed as one of the guideline contraindications.¹⁸ We did not encounter any adverse events performing the test in our severe asthma population.

FEV₁% predicted was also independently associated with the level of PA in the OAD group. Considering that the degree of AFL categorizes disease severity, and that increased severity has been associated with lower activity levels,^{12,33,40} these results are somewhat expected. Interestingly, though, in the full model, AFL was a stronger predictor of steps/day than dyspnoea, despite the latter being one of the most disabling symptoms in diseases such as COPD and severe asthma.

Activity-related dyspnoea was common in our OAD population. We found that higher dyspnoea scores (≥2) modestly explained the adjusted variance in PA in the individual model, but it did not remain significant in the full model. It could be that breathlessness alone is

Respirology (2018)

not enough to explain the PA impairment found in these diseases, and that the evaluation of symptoms in different domains could give a more accurate picture. This is in line with recommendations made in COPD guidelines.¹⁵

In our full multivariate model, the inflammatory markers of hs-CRP and sputum eosinophils were not independently associated with PA, despite displaying moderate to weak associations individually. This is probably related to the strong association found with the 6MWD, which by itself accounted for most of the variance in PA. Despite this, systemic inflammation was still significantly associated with steps/day in the OAD group, which is in line with evidence in COPD⁷ and in severe asthma.¹¹

Exercise capacity was a better predictor of PA than AFL. This may be due to the fact that functional exercise capacity gives an estimate of the person's ability to endure exercise,⁹ which is a subset of PA.⁴¹ In COPD, the mechanisms behind exercise limitation are multifactorial, and include the impairment of the ventilatory, cardiovascular, metabolic and locomotor muscle systems.⁴² It is likely that these mechanisms also play a role in severe asthma and bronchiectasis, especially in

© 2018 Asian Pacific Society of Respirology

8

patients showing a degree of overlap between these conditions.

Lastly, in the general population, PA has been positively associated with the prevention of different chronic diseases.^{43,44} Considering the co-morbidity burden found in OAD populations, the promotion of PA may generate benefits beyond respiratory symptoms alone.

Our study has some limitations. Its cross-sectional design does not infer causality of our findings. Additionally, we have not considered important co-morbidities, disease characteristics, sociodemographic and environmental characteristics nor behaviours (i.e. sedentary time) that may impact the engagement of PA or interact with disease outcomes. Lastly, our populations are not demographically nor clinically matched, which limit comparison of our findings. Nevertheless, diagnosis was not a significant interaction in the relationship between the independent variables and steps/day.

Conclusion

PA impairment is a shared behavioural characteristic of patients with COPD, severe asthma and bronchiectasis. Shared clinical characteristics, such as exercise capacity and AFL, explain an important proportion of this impairment in OAD. Both of these traits can be targeted by specific treatments, making PA impairment a 'treatable trait' that requires consideration in the management of these diseases. Treatment studies aimed at improving PA in these populations are needed and our data may inform such interventions.

Acknowledgements

The authors would like to thank participants and their families who made this study possible. They are also grateful to Dr Sarah Hiles (PRC for Healthy Lungs, University of Newcastle, Australia) for statistical support, to Kelly Steel, Gabrielle Le Brocq, Amber Smith, Penelope Baines, Dr Netsanet Negewo and Michelle Rostas (PRC for Healthy Lungs, University of Newcastle, Australia) for their assistance and technical support with the study visits; and to the laboratory staff from the PRC for Healthy Lungs for conducting the sample analysis. This research was supported by a University of Newcastle and Priority Research Centre for Healthy Lungs Postgraduate Scholarship and the Hunter Medical Research Institute, Australia.

Disclosure statement

V.M.M. was supported by an NHMRC TRIP fellowship; has participated in educational symposia funded by GlaxoSmithKline, AstraZeneca, Menarini and Novartis; and has participated in advisory boards for GlaxoSmithKline, AstraZeneca and Menarini. P.G.G. holds an NHMRC Practitioner Fellowship; has participated in educational symposia funded by AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline and Novartis; and has participated in studies funded by GlaxoSmithKline and AstraZeneca. P.A.G. is supported by a NHMRC-ARC Dementia Research Development Fellowship and has participated in an educational symposium funded by Boehringer Ingelheim.

Abbreviations: 6MWD, 6-minute walk distance; 6MWT, 6-minute walk test; AFL, airflow limitation; BE, bronchiectasis; FEV₁, forced expiratory volume in the first second; FVC, forced vital capacity; HMRI, Hunter Medical Research Institute; hs-CRP,

© 2018 Asian Pacific Society of Respirology

high-sensitivity C-reactive protein; ICS, inhaled corticosteroid; LABA, long-acting beta agonist; MVPA, moderate and vigorous PA; OAD, obstructive airway disease; PA, physical activity; SA, severe asthma.

L Cordova-Rivera et al.

REFERENCES

- 1 AIHW. Asthma, chronic obstructive pulmonary disease and other respiratory diseases in Australia. Cat. no. ACM 20. 2010. [Accessed Aug 2017.] Available from URL: https://www.aihw.gov.au/reports/ asthma-other-chronic-respiratory-conditions/asthma-chronicobstructive-pulmonary-disease-and/contents/summary
- 2 Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. *Clinics* 2012; 67: 1335–43.
- 3 Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 2010; 376: 803–13.
- 4 Saunders T, Campbell N, Jason T, Dechman G, Hernandez P, Thompson K, Blanchard CM. Objectively measured steps/day in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. J. Phys. Act. Health 2016; 13: 1275–83.
- 5 Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005; 171: 972-7.
- 6 Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur. Respir. J. 2009; 33: 262–72.
- 7 Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, Vaes AW, Puhan MA, Jehn M, Polkey MI et al. An official European Respiratory Society statement on physical activity in COPD. Eur. Respir. J. 2014; 44: 1521–37.
- 8 Demeyer H, Louvaris Z, Frei A, Rabinovich RA, de Jong C, Gimeno-Santos E, Loeckx M, Buttery SC, Rubio N, Van der Molen T et al.; Mr Papp PROactive Study Group and the PROactive Consortium. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. *Thorax* 2017; 72: 415–23.
- 9 Troosters T, van der Molen T, Polkey M, Rabinovich RA, Vogiatzis I, Weisman I, Kulich K. Improving physical activity in COPD: towards a new paradigm. *Respir. Res.* 2013; 14: 115.
- 10 Coelho CM, Reboredo MM, Valle FM, Malaguti C, Campos LA, Nascimento LM, Carvalho EV, Oliveira JCA, Pinheiro BV. Effects of an unsupervised pedometer-based physical activity program on daily steps of adults with moderate to severe asthma: a randomized controlled trial. J. Sports Sci. 2018; 36: 1186–93.
- 11 Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, McDonald VM. Physical activity and exercise capacity in severe asthma: key clinical associations. J. Allergy Clin. Immunol. Pract. 2018; 6: 814–22.
- 12 Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. J. Allergy Clin. Immunol. Pract. 2018; https://doi.org/10.1016/j.jaip.2018.02.027.
- 13 Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER *et al.* International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. *Eur. Respir. J.* 2014; **43**: 343–73.
- 14 Polverino E, Goeminne PC, McDonnell MJ, Aliberti S, Marshall SE, Loebinger MR, Murris M, Canton R, Torres A, Dimakou K et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017; 50: pii: 1700629.
- 15 From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2018. [Accessed Aug 2018.] Available from URL: http://goldcopd.org
- 16 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 1987; 40: 373–83.

Respirology (2018)

Physical activity in airway diseases

- 17 Jones PW, Quirk FH, Baveystock CM. The St George's Respiratory Questionnaire. *Respir. Med.* 1991; 85(Suppl. B): 25–31; discussion 33–7.
- 18 Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, McCormack MC, Carlin BW, Sciurba FC, Pitta F et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. *Eur. Respir. J.* 2014; 44: 1428–46.
- 19 Jenkins S, Cecins N, Camari B, Williams C, Thompson P, Eastwood P. Regression equations to predict 6-minute walk distance in middleaged and elderly adults. *Physiother. Theory Pract.* 2009; 25: 516–22.
- 20 Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 1999; 159: 179–87.
- 21 Fletcher CM. Standardised questionnaire on respiratory symptoms: a statement prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis (MRC breathlessness score). Br. Med. J. 1960; 2: 1662.
- 22 Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 1005–12.
- 23 Chanez P, Holz O, Ind PW, Djukanović R, Maestrelli P, Sterk PJ. Sputum induction. Eur. Respir. J. 2002; 20: 38–88.
- 24 From ActiGraph Software Department: ActiLife 6 User's Manual. 2012. [Accessed Nov 2017.] Available from URL: http:// actigraphcorp.com/support/manuals/actilife-6-manual/
- 25 Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med. Sci. Sports Exerc. 2012; 44: S68–76.
- 26 Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. *Med. Sci. Sports Exerc.* 2011; 43: 357–64.
- 27 Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998; 30: 777–81.
- 28 Tudor-Locke C, Craig CL. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011; 8: 80.
- 29 Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. *Thorax* 2006; 61: 772–8.
- 30 Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, Magnussen H. Physical activity is the strongest predictor of allcause mortality in patients with COPD: a prospective cohort study. *Chest* 2011; 140: 331–42.
- 31 Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD et al.; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013; 188: e13–64.
- 32 Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, Rabe KF, Watz H, ERA-Study Group. Physical activity, airway resistance and small airway dysfunction in severe asthma. *Eur. Respir. J.* 2017; **49**: pii: 1601827.
- 33 Bradley JM, Wilson JJ, Hayes K, Kent L, McDonough S, Tully MA, Bradbury I, Kirk A, Cosgrove D, Convery R et al. Sedentary behaviour and physical activity in bronchiectasis: a cross-sectional study. BMC Pulm. Med. 2015; 15: 61.
- 34 Martinez-Gonzalez MA, Varo JJ, Santos JL, De Irala J, Gibney M, Kearney J, Martinez JA. Prevalence of physical activity during leisure time in the European Union. *Med. Sci. Sports Everc.* 2001; 33: 1142-6.
- 35 Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, Humbert M, Jones P, Gibson PG, Vestbo J et al. Treatable traits:

toward precision medicine of chronic airway diseases. Eur. Respir. J. 2016; 47: 410–9.

- 36 Pinto-Plata VM, Cote C, Cabral A, Taylor JA, Celli B. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. *Eur. Respir. J.* 2004; 23: 28–33.
- 37 Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, Lee AL, Camillo CA, Troosters T, Spruit MA et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. *Eur. Respir. J.* 2014; 44: 1447–78.
- 38 de Camargo AA, Amaral TS, Rached SZ, Athanazio RA, Lanza FC, Sampaio LM, de Carvalho CR, Cukier A, Stelmach R, Dal Corso S. Incremental shuttle walking test: a reproducible and valid test to evaluate exercise tolerance in adults with noncystic fibrosis bronchiectasis. Arch. Phys. Med. Rehabil. 2014; 95: 892–9.
- 39 Turner S, Eastwood P, Cook A, Jenkins S. Improvements in symptoms and quality of life following exercise training in older adults with moderate/severe persistent asthma. *Respiration* 2011; 81: 302–10.
- 40 Troosters T, Sciurba F, Battaglia S, Langer D, Valluri SR, Martino I, Benzo R, Andre D, Weisman I, Decramer M. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. *Respir. Med.* 2010; 104: 1005–11.
- 41 Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for healthrelated research. *Public Health Rep.* 1985; 100: 126–31.
- 42 West JB. The major limitation to exercise performance in COPD is inadequate energy supply to the respiratory and locomotor muscles vs. lower limb muscle dysfunction vs. dynamic hyperinflation. Defining 'dynamic hyperinflation. J. Appl. Physiol. (1985) 2008; 105: 758-62.
- 43 Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017; 390: 2643–54.
- 44 Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet* 2012; 380: 219–29.

Supplementary Information

Additional supplementary information can be accessed via the html version of this article at the publisher's website.

Appendix S1. Inclusion and exclusion criteria. Appendix S2. Associations between the levels of physi-

cal activity and exacerbations. Figure S1. Forest plots of associations of clinical and

biological outcomes with steps/day by disease. Table S1. Adjusted simple linear regression models

testing interaction effects between diagnosis and each independent variables on steps/day.

 Table S2. Associations between physical activity and exacerbations.

Table S3. Clinical and biological characteristics associated with moderate and vigorous physical activity in the OAD group.

Visual Abstract Impaired physical activity and associated shared disease characteristics in severe asthma, bronchiectasis and COPD.

Respirology (2018)

© 2018 Asian Pacific Society of Respirology

APPENDIX VIII: Chapter 4 - Editorial

Respirology

EDITORIAL

Is there a common pattern in physical activity levels comparing diverse chronic airway diseases?

Key words: accelerometry, motor activity, obstructive lung disease.

In recent years, physical activity (PA) has been recognized as a key component of prognosis and progression in patients with chronic obstructive pulmonary disease (COPD). Studies on determinants and outcomes of PA in this context have increased. Indeed, there is compelling evidence of the positive effects of PA on mortality and exacerbations in these patients,¹ and there is also evidence on clinical, functional and social determinants to keep patients physically active.¹⁻³ Information on the impact of PA is still scarce in other chronic airway diseases such as asthma or bronchiectasis. Are the levels, patterns and characteristics of PA similar in these respiratory chronic conditions compared to those in COPD? Increasing PA is considered a desirable outcome in the context of a comprehensive pulmonary rehabilitation programme.⁴

In a recent publication in *Respirology*, Cordova-Rivera *et al.*⁵ compared the levels of PA among 189 participants with severe asthma, bronchiectasis or moderate to severe COPD with those of a control group made up of 63 healthy individuals using a valid accelerometer, the Actigraph WGT3X-BT (Penascola, FL, USA), as an assessment tool. The main findings were that patients with bronchiectasis or severe asthma showed lower levels of PA compared to controls (as it would be expected) but higher levels compared to patients with COPD. There were no differences between asthma and bronchiectasis, which was somewhat unexpected. Why are patients with asthma or bronchiectasis more active than patients with COPD?

Lung function (forced expiratory volume in the first second, FEV₁) and functional capacity measured by the 6-min walking test (6MWT) were independently associated with both steps/day and moderate to vigorous PA regardless of the diagnosis of COPD, severe asthma or bronchiectasis. Although prospective data have shown less lung function decline in active patients with severe asthma or COPD compared with inactive patients,^{6,7} some other longitudinal data indicate a reduction in PA, while exercise capacity remains unchanged.^a In view of these findings, are the clinical and research communities ready to foster a therapeutic role for PA in chronic airway diseases?

This is the first study⁵ to highlight the similarities and differences among these three chronic airways diseases with the potential aim of developing interventions to improve PA. However, as PA is defined as a behaviour, efforts for improving and modifying PA should not focus on clinical, functional and biological

© 2019 Asian Pacific Society of Respirology

determinants alone. Evidence and information about barriers and facilitators of PA in COPD are increasing. Primary care patients with COPD report that PA is limited by emotions, such as frustration and disappointment, more than by the severity of their underlying airflow obstruction. Hence, PA could be enabled by the belief that PA is beneficial at an individual level.⁹

There are some socio-familiar determinants, such as dog walking, grandparenting and the presence of a physically active loved one, that can facilitate patients with COPD to be physically active.^{2,3} Hence, it could be said that interventions on PA should be integrated under the recent concept of 'interpersonal medicine', which includes a healthcare service focus on patients' circumstances, capabilities and preferences.¹⁰ PA is a behaviour; hence, it is the patients' decision to be active or not and to spend time being sedentary or not (independent of the FEV₁ and 6MWT values). Interpersonal medicine involves the social environment of the patient (community, family, work, home, clinics, etc.) and all the members that constitute those 'ecosystems' (patients, families, clinicians, etc.).

Going further, the design of new studies assessing PA should be based on ecological models that include all the contributors to activity decisions, such as health and disease beliefs; symptoms; emotional characteristics; and social, cultural and environmental factors.^{4,11} We should encourage interaction with pets, grandchildren, active loved ones or any element that influence and promote PA in our patients. This will enable clinicians, researchers, health providers, policymakers and patients to develop meaningful relationships and interventions for achieving patients' empowerment and adherence to long-term health-promoting behaviours.^{4,10}

The main characteristics that limit PA in patients with chronic airways diseases are (again) clinical and functional variables such as the severity of airflow limitation, lower functional capacity and higher dyspneea. However, it is important to point out that the results of this study allow further analysis of all PA determinants in other obstructive lung diseases aside from COPD. This knowledge on correlates and determinants in PA in chronic respiratory patients could guide a more personalized strategy to change health-related behaviour.

Elena Gimeno-Santos, PT, Psych, PhD ᠑ Respiratory Clinic Institute, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

> Respirology (2019) doi: 10.1111/resp.13468

2

Acknowledgement

I thank Professor Rodriguez-Roisin for his valuable feedback.

REFERENCES

- 1 Gimeno-Santos E, Frei A, Steurer-Stey C, De Batlle J, Rabinovich RA, Raste Y, Hopkinson NS, Polkey MI, van Remoortel H, Troosters T et al.; PROactive Consortium. Determinants and outcomes of physical activity in patients with COPD: a systematic review. *Thorax* 2014; 69: 731-9.
- 2 Arbillaga-Etxarri A, Gimeno-Santos E, Barberan-Garcia A, Benet M, Borrell E, Dadvand P, Foraster M, Marín A, Monteagudo M, Rodriguez-Roisin R *et al.*; Urban Training Study Group. Socio-environmental correlates of physical activity in patients with chronic obstructive pulmonary disease (COPD). *Thorax* 2017; **72**: 796–802.
- 3 Mesquita R, Nakken N, Janssen DJA, van den Bogaart EHA, Delbressine JML, Essers JMN, Meijer K, van Vliet M, de Vries GJ, Muris JWM et al. Activity levels and exercise motivation in patients with COPD and their resident loved ones. *Chest* 2017; 151: 1028–38.
- 4 Spruit MA, Singh SJ, Garvey C, Zu Wallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD et al.; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013; 188: e13–64.

5 Cordova-Rivera I, Gibson PG, Gardiner PA, McDonald VM. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. *Respirology* 2018. https://doi. org/10.1111/resp.13428.

Editorial

- 6 Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Antó JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am. J. Respir. Crit. Care Med. 2007; 175: 458–63.
- 7 Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, Mai XM. Physical activity and lung function decline in adults with asthma: the HUNT Study. *Respirology* 2017; 22: 278–83.
- 8 Sievi NA, Brack T, Brutsche MH, Frey M, Irani S, Leuppi JD, Thurnheer R, Kohler M, Clarenbach CF. Physical activity declines in COPD while exercise capacity remains stable: a longitudinal study over 5 years. *Respir. Med.* 2018; **141**: 1–6.
- 9 Kosteli MC, Heneghan N, Roskell C, Williams S, Adab P, Dickens AP, Enocson A, Fitzmaurice DA, Jolly K, Jordan R et al. Barriers and enablers of physical activity engagement for patients with COPD in primary care. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 1019–31.
- 10 Chang S, Lee TH. Beyond evidence-based medicine. N. Engl. J. Med. 2018; 379: 1983–5.
- 11 Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW. Correlates of physical activity: why are some people physically active and others not? *Lancet* 2012; 380: 258–71.

© 2019 Asian Pacific Society of Respirology

APPENDIX IX: Case Record File for severe asthma participants

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA						
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE	A HEALTH SERVICE				
ID	INITIALS	DATE//				

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA VISIT 1 PART A

VISIT 1 CHECKLIST	Sign Initials
Date of Visit 1 Part A /	
Demographics	
Inclusion/Exclusion	
Patient Experience	
Patient related problems	
Clinical Data	
Other Medications	
Systemic Inflammation (blood collected)	
Adherence	
Exacerbation History	
Mucus Hyper-secretion	
Dyspnoea	
Inhaler technique	
Nutrition	
Sleep	
Smoking (ExCO collected)	
Exercise tolerance (6MWT)	
Sputum Induction	
Monitored	

Phenotype Based Management of Severe Persistent Asthma						
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE						
ID	INITIALS	DATE//	Visit			

SUBJECT DEMOGRAPHICS SUBJECT ID: _____ MRN:_____ Surname: First Name:_____ _____ Middle Name: _____ Contact Details: Street Address: Suburb:_____ Post Code:_____ Phone Home:_____ Work:_____ Mobile:_____ Email: Female Sex: Male Date of Birth: ____/___/_____ GP Name and Address:

REMOVE THIS SHEET FROM CRF

Phenotype Based Management of Severe Persistent Asthma						
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE						
ID	INITIALS	DATE//	Visir			

SUBJECT DEMOGRAPHICS --- VISIT 1

SUBJECT ID: _____ SUBJECT INITIALS: _____

** See Subject demographics file for contact details.

Sex:	Male	Female

Date of Birth: ____ /__ _/___ __

Age of asthma onset :

Measure height twice. Ask the subject to take a deep breath in while performing the measurement so they get to their full height. Both measures must be within 0.5cm of each other, if not repeat a third

time. Then record the average of the 2 measures; this is the measure you will report

Height (without shoes):		•		CI	n
Height (without shoes):		•	•	CI	n
Average:		•		CI	m
Weight (without shoes):				-	kg
ВМІ			•		kg/m2

÷

Litres	% predicted				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE	Phenotype Based Management of Severe Persistent Asthma				
--	--	--	--	--	--
	THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID INITIALS DATE/ VISIT	DATE/ VISIT				

INCLUSION CRITERIA	EXCLUSION CRITERIA
Subjects must fulfil ALL of the following to be	Subjects with any of the following will not be
included in the study.	included in the study.
YES NO	YES NO
Able to provide informed written	Inability to attend study visits
consent	
Previous Severe Asthma Diagnosis	Current lung cancer or other blood,
AND previous evidence of (below)	lymphatic or solid organ
BD response ≥12% OR	Expected prognosis poor
Airway Hyper-responsiveness OR	<3 months survival
Peak Flow diary (diurnal variation≥15% or	
>50mi)	
High Dose ICS > 1000mcg	Current Treatment with
AND	Omalizumab (xolair).
LABA	Macrolides or statins.
OR Maintenance Prednisone	
	QTc >440s (discuss with investigator)
AND	
FEV ₁ Post B ₂ : <80% Pred OR FEV ₁ /FVC<70%	Postpone if:
OR	Exacerbation in the last 4
Astima Control Questionnaire 21.5 OR	following:
with OCS use	Hospital admission
	Emergency attendance
	Commenced OCS or increased
	maintenance dose for acute
	symptoms (postpone visit for 4
	weeks).
	Antibiotics for chest infection

Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VI3T	

SHORT ASSESSMENT OF PATIENT SATISFACTION (SAPS) WITH INSTRUCTIONS

Instructions: After reading each question, circle the answer that best describes your situation. We know that sometimes answers may not describe you exactly, so please pick the answer that *most closely describes you*.

When you have finished, please check that you have answered all questions.

Q1. How happy are you with the effect of your treatment?

Very happy	0
Нарру	1
Neither happy nor unhappy	.2
Unhappy	3
Very unhappy	4

Q2. How satisfied are you with the explanations the {doctor/other health professional} has given you about the results of your treatment?

about the reculte of your bouthern.	
Very dissatisfied	0
Dissatisfied	1
Neither satisfied nor dissatisfied	2
Satisfied.	3
Very satisfied	4

Q3. The {doctor/other health professional} was very careful to check everything when examining you.

Strongly agree		U
Agree		1
Not sure		2
Disagree	4	3
Strongly disagree	4	4

Q4. How satisfied were you with the choices you had in decisions affecting your health care?

Very dissatisfied	
Dissatisfied	1
Neither satisfied nor dissatisfied	2
Satisfied	3
Very satisfied	4

Q5. How much of the time did you feel respected by the {doctor/other health professional}?

All of the time	0
Most of the time	1
About half the time	2
Some of the time	3
None of the time	4

Q6. The time you had with the {doctor/other health professional} was not long enough.

Strongly agree	i
Agree	1
Not sure	2
Disagree	2
Strongly disagree	1

Total

Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VIsit	

Q7. Are you happy with the care you received in the {hospital/clinic}?

Very happy	0
Нарру	1
Neither happy nor unhappy	2
Unhappy	3
Very unhappy	4

Scoring the SAPS: 1. Reverse the scores for #1, #3, #5, #7 2. Sum all scores. The score range is from 0 (extremely dissatisfied) to 28 (extremely satisfied)

PATIENT RELATED PROBLEMS

What is/are the biggest problem/s you experience as a result of your breathing problem?

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA			
THE UNIVERSITY OF NEW	VCASTLE HUNTER NEW ENGLAND AREA	A HEALTH SERVICE	
ID	INITIALS	DATE//	VISIT

MEDICAL HISTORY/COMORBIDITIES

Area (Provide diagnosis)	Y/N	Is the condition current?	Is the patient being treated
Eg. IHD, hypertension, COPD			for this condition?
Ear, nose and throat			
Eye			
Respiratory			
Cardiovascular			
Gastrointestinal			
Hepatobiliary / Pancreas			
Genitourinary (urinary both sexes and			
male reproductive)			
Reproduction (female)			
Cerebrovascular			
Blood and Lymphatic			
Endocrine and Metabolic			
Musculoskeletal			
Skin			
Psychiatric			
Cognitive			
Malignancy			
Other information			

CHARLESON

SA CRF V1 VERSION 1 OF 1

PAGE 7 OF 81

Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VISIT	

Clinical Data: Respiratory Medications

Please circle(Drug Name)	Dose	Number	Frequency
		of puffs	
Short acting β ₂ -agonist: Ventolin Asmol Airomir Terbutaline			
Long acting β ₂ -agonists:			
Leukotriene modifier:			
Singulair			
Short acting anti-cholinergic: Atrovent			
Long acting anti-cholinergic: Spiriva, Seebri, Bretaris			
Nasal Steroids: Name			
Theophylline: Austyn, Neulin, Theo-Dur			
Oral Steroids Prednisone, Panafcort, Solone			
Inhaled Corticosteroids:			
Qvar, Pulmicort, Flixotide, Alvesco			
COMBINATIONS Seretide/Symbicort			
Oxygen			
Mucolytics			
How many days in the last week did you use your reliever medication?		/7	
How many times on those days did you use your reliever?			
Other respiratory medications (Drug, strength, dose,		Yes/No	
frequency, CPAP)			
ALLERGIES – LIST		Yes/No	

PHBNOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

Previous Treatment Trials

DRUG NAME	DATE COMMENCED AND	RESPONSE
(eg singulair/montelukast), omalizumab (xolaire), methotrexate/Rheumatrex/ Trexall, oral gold/auranofin/ Ridaura, theophylline/verapamil/ Calan, Verelan/ Verelan PM/ Isoptin/ Isoptin SR/ Covera HS OR macrolides/Biaxin, Clarithromycin, Ery-Tab, and Erythromycin.)	CEASED	

Dura and Duran bla			
PHENOTYPE BASED IV/A	NAGEMENT OF SEVERE PERSISTENT ASTHMA		
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID	INITIALS	DATE//	VI9T

OTHER MEDICATIONS

Drug	Route	Total Daily Dose (units)	Indication	Started Visit 13	Post
				Yes	No

PHENOTYPE BASED M THE UNIVERSITY OF NE	ANAGEMENT OF SEVERE PERSISTENT ASTHMA AWCASTLE HUNTER NEW ENGLAND ARE	A HEALTH SER	VICE		
ID		DATE		_/	VISIT
Sputum collecte	ed for bacteriology (initial)	Infectio Tim	on ne of c	collection:	
	Blood & S	putum I	Biom	arkers	
Blood collected	for: FBC, CRP, RNA, serum,	plasma.			
(initial)	Time of collection:				
Tube required:					
2 x 4mL EDTA	blood (purple top)				
1 x 9ml EDTA (purple top)				
1 x 4ml Lithium	heparin (green)				
1 x 6ml serum ((red)				
		Adhe	rence		
Medication use over the last three months					
Please circle th	e answer:				
In the last three	month;				
Have you at tim Comment – ie .	es been careless about using Describe how many missed do	your inha ses in the	ler? e last	week	Y/N
Have you ever Comment	forgotten to use your inhaler?				Y/N
Have you ever Comment	stopped using your inhaler bec	ause you	felt b	etter?	Y/N
Have you ever Comment	stopped using your inhaler bec	ause you	felt w	vorse?	Y/N
Have you ever Comment	used your inhaler less than the	doctor pr	rescrit	bed because	you felt better? Y/N
Have you ever attack? Comment	used your inhaler more than th	e doctor p	prescr	ibed because	e you felt you were having ar Y/N

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEW	VCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT		

EXACERBATION QUESTIONNAIRE Questions relate to the last 12 months (visit 1A) or since last visit for follow up visits and relate to asthma only Retrospective exacerbation - complete as many details as possible If Yes, details Туре Severe Exacerbation Y/N Date/ Name/ Dose/ Duration Hospitalization Oral Steroids Prescribed ED visit tablets No 0 Yes 1 suspension GP injection prescription Increase from a stable No 0 Yes 1 Details maintenance dose, for at least 3 day # courses self Total number of severe exacerbations administered via WAP Antibiotics (type, dose, Details courses) Moderate Exacerbation If Yes, details Worsening of asthma No 0 Yes 1 symptoms $\geq 2 days$? If Yes, details Initiated your WAP? No 0 Yes 1 Increase rescue If Yes, details bronchodilator (Ventolin, No 0 Yes 1 Asmol, Bricanyl) ≥ 2 days OR any inhale medication $\geq 2 days$? Comments e.g. trigger/exacerbation duration

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE / /	Vierr		
ID	INITALS	DAIE//	VISII		

DYSPNOEA

Modified Medical Research Council Dyspnoea Scale

"We would like to assess your level of breathlessness"

Grade/Circle

- 0 "I only get breathless with strenuous exercise"
- 1 "I get short of breath when hurrying on the level or walking up a slight hill"
- 2 "I walk slower than people of the same age on the level because of breathlessness or have to stop for breath when walking at my own pace on the level"
- 3 "I stop for breath after walking about 100 yards or after a few minutes on the level"
- 4 "I am too breathless to leave the house" or "I am breathless when dressing"

Note to researcher: This is the modified MRC scale that uses the same descriptors as the original MRC scale in which the descriptors are numbered 1-5. The modified MRC scale (0-4) is used for calculation of BODE index.

EXACERBATION MANAGEMENT

lave you been prescribed a written action plan?		Yes / No
Do you use your WAP?	Yes / No	
If not why not?		

How many times have you used you WAP in the last 6 months

Note to researcher: Please ask for a copy of the WAP. If the participant has undergone an education programme within the last 12 months please also ask for a copy of their action plan prior to enrolment in the education programme.

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

Mucous Hypersecretion

1. When you don't have a cold, do you usually bring up phlegm from your chest OR have phlegm on your chest that is difficult to bring up? Yes / No

If Yes:,1A. How many days in the past week have you coughed up sputum/phlegm? /7

2A. Are there months in which you have this phlegm on most days? Yes / No

NB: "this phlegm" refers to phlegm that is brought up AND/OR phlegm that is stuck in the chest.

If Yes, ask both Questions 2B & 2C; If No, skip to Dyspnea]

2B. Do you bring up this phlegm on most days for as much as three months each year?

Yes / No

2C. For how many years have you had this phlegm? (Circle)

Less than 2 years	2-5 years	More than 5 years
-------------------	-----------	-------------------

3. Have you produced sputum/phlegm for more than 3 consecutive months over the past 2 years? Yes / No

(Note to researcher: To Clarify - 'Have you produced sputum for 3 consecutive months for 2 consecutive years?')

4. How much sputum/phlegm do you cough up in the course of a day?

< Teaspoon Teaspoon 1 tblspoon 2 tblspoons 1/2 cup 1 cup

5. What part in the day do you cough up the most sputum/phlegm?

6. What colour is your sputum/phlegm at the most productive time?

clear / white / yellow / green / blood stained

7. What colour is your sputum/phlegm for the rest of the time? clear / white / yellow / green / blood stained

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEW	VCASTLE HUNTER NEW ENGLAND AREA	HEALTH SERVICE		
ID	INITIALS	DATE//	Visit	

Inhaler Technique Please assess inhaler technique today.

Please use placebo devices. Each box must be entered using the following choices;

I = inadequate	A = ade	equate	O = optimal	NU – Not Used	
pMDI		Accuhaler		Handihaler	
Spacer		Autohaler		Nebuliser	
Turbuhaler		Aerolizer		Other device (specify)	
Number of devices used (peak flow <i>not</i> included)					
Note to researcher: refer to AMS inhaler device assessment sheet					

Menstruation Effect on Asthma (Females only)

Does your asthma worsen prior to commencement of your period?

Are you still having menstrual cycles?

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE / /	VISIT	

Laryngeal Dysfunction Questionnaire

1. Where do you feel the tightness?

Neck 🛛	jugular notch 🛛	upper chest	lower chest	N/A 🗆
2. Is it harder (if answers t	r to breathe in than (to Q1 and Q2 are N	out? I/A and No then m	Y/N ove onto Q7).	
3. How quicl (ie, tiợ	kly do your sympton ghtness, breathing d	ns come on? lifficulty)	Seconds < 3 minutes > 3 minutes	
4. When the	attack stops, (includ	ling after treatment)	, how quickly do you	ur symptoms go away?
			Seconds < 5 minutes > 5 minutes	
5. What trigg	ers your symptoms'	? (eg: exercise, l	neart burn, pnd, polli	ution, cold air, talking)
6. Do asthma	a medications give y	ou relief?		
No Yes (N/A	if Y within how man	y minutes?)	minutes	
7. Does your	voice get hoarse or	do you lose your v	oice?	Y/N
8. Do you fee	el a lump in your thr	pat?		Y/N
9. Do you fee	el like you are choki	ng or suffocating?		Y/N
10. Do you h	ave pins and needle	es around the lips o	r the fingertips?	Y/N

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

Newcastle Laryngeal Hypersensitivity Questionnaire

© Vertigan, Bone & Gibson, 2014

1. There is an abnormal sensation in my throat. (0)

(circle one)

All of the time	1
Most of the time	2
A good bit of the time	. 3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

2. I feel phlegm and mucous in my throat (TT)

(circle one)

All of the time	1
Most of the time	2
A good bit of the time	
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

3. I have pain in my throat (P/Th)

	(circle one)
All of the time	1
Most of the time	2
A good bit of the time	. 3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	. 7

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE	A HEALTH SERVICE		
ID	INITIALS	DATE//	Visit	

4. I have a sensation of something stuck in my throat (o)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	3
Some of the time	.4
A little of the time	5
Hardly any of the time	6
None of the time	7

5. My throat is blocked. (0)

(circle one)

All of the time	1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

6. My throat feels tight. (o)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

Phenotype Based Management of Severe Persistent Asthma			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT

7. There is an irritation in my throat. (0)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	3
Some of the time	.4
A little of the time	5
Hardly any of the time	6
None of the time	7

8. I have a sensation of something pushing on my chest. (P/Th)

	(circle one)
All of the time	1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	

9. I have a sensation of something pressing on my throat (o)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	. 3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT

10. There is a feeling of constriction as though needing to inhale a large amount of air. (o)

	(circle one)
All of the time	1
Most of the time	2
A good bit of the time	. 3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

11. Food catches when I eat or drink. (o)

	(circle one)
All of the time	1
Most of the time	2
A good bit of the time	. 3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time.	. 7

12. There is a tickle in my throat. (TT)

(circle one)

All of the time	1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA			
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE	
ID	INITIALS	DATE//	Visit

13. There is an itch in my throat. (TT)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

14. I have a hot or burning sensation in my throat (P/Th)

	(circle one)
All of the time	.1
Most of the time	2
A good bit of the time	3
Some of the time	4
A little of the time	5
Hardly any of the time	6
None of the time	7

Phenotype Based Management of Severe Persistent Asthma							
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENCLAND AREA HEALTH SERVICE							
ID	INITIAL 2	DATE / /	1.4rtm				
ID	INITIAL3		VISII				
		NUTRITION					
Weight	kg						
Height	cml						

BMI = weight (kg) ÷ height² (m)

BMI = _____

- BMI>27 OR waist circumference >94cm (males) or >80cm (females): Overweight/Obese (refer to Dietitian)
- BMI 20-25 AND 25-27 if waist circumference <94cm (males) and <80cm (females): Acceptable weight range- refer to Dietitian if in intervention group
- BMI <20 Malnourished or at risk of malnutrition (refer to Dietitian)

Malnutrition Universal Screening Tool

1. Have you/the patient lost weight recently without trying?

No Unsure	0
Yes, How much (kg)?	-
1-5 6-10	2
11-15 >15	3
Unsure	2

2. Have you /the patient been eating poorly because of a decreased appetite?

No	0
Yes	1

Malnutrition Universal Screening Tool - Total Score

		1
		L
		L
		L

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

Epworth Sleepiness Scale

How likely are you to dose off or fall asleep in the following situations, in contrast to feeling tired? Using the following scale circle a number to score each of the questions with regard to the last week.

0 Never d	l 2 loze Slight chance of dozing Moderate chance of dozing	High	3 chance	of dozin;	g
How lik	ely are you to doze off or fall asleep (please circle your answer)				
1.	While sitting and reading?	0	1	2	3
2.	While watching TV?	0	1	2	3
3.	While sitting inactive in a public place (eg theatre, meeting)?	0	1	2	3
4.	While a passenger in a car for an hour without a break?	0	1	2	3
5.	While lying down to rest in the afternoon when circumstances permit?				
		0	1	2	3
б.	While sitting and talking to someone?	0	1	2	3
7.	While sitting quietly after lunch without alcohol?	0	1	2	3
8.	While in a car stopped for a few minutes in traffic?	0	1	2	3

Total Score

PHENOTYPE BASED M THE UNIVERSITY OF NE	ANAGEMENT OF SEVERE PERSISTENT ASTHMA WCASTLE HUNTER NEW ENGLAND ARE	EA HEALTH SERVIC	Æ	1
D	INITIALS		//	VISIT
Smoking Mo	dule			
Do you current	y smoke? Yes / No			
lf yes, time sind	e last cigarette			_(hours)
Have you ever	smoked? Yes / No			
If yes, how old	were you when you began smo	oking?		_(years)
If yes, how old	were you when you gave up sn	noking?		(years)
How many ciga	rettes per day did/do you smol	ke?		
Pack years	= (Number of cigarettes/2	0) x	years smoked	i =
Calculation ass	umes 1 pack has 20 cigarettes	s. 1 pack ye	ar = 20 cigarette	es per day for one year
Exhaled carbo	n monoxide level		ppm (Pico m	eter)

PHENOTYPE BASED MANAG THE UNIVERSITY OF NEWCA	SEMENT OF SEVERE PERSISTENT AST STLE HUNTER NEW ENGLA	HMA ND AREA HEALTH SERVICE		
ID IN	ITIALS	DATE//		
	E	xercise Tolerance		
Predicted HRmax	(220-age):			
Bronchodilator p	re treatment Salbutan	nol 400mcg given? Y	es/No Time give	n:
Date		Time		
Bronchodilator time	e since last dose	_		
BP	RR	Supplemental Oxygen?	Gait Aid?	
Time (min)	SpO ₂	HR	Dyspnoea (BORG)	Rests
Rest				
1				
2				
3				
4				
5				
6				
Recovery 1				Total rests

Post RR (at 6 minutes)_

2

Limiting factor to the test: Low SpO₂

Leg fatigue
Other:

40	200	360	520
80	240	400	560
120	280	440	600
160	320	480	+/-
TOTAL WALK DISTANC	E		METRES

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VISIT	

BRONCHODILATOR REVERSIBILITY AND SPUTUM INDUCTION

Please refer to sputum induction flowchart for safety guidelines. If FEV1 < 40% call physician. Pre medicate all IPBM participants with ventolin (400mcg).

Asthma medication and time last taken	1.
	2.
	3.
Has the patient rinsed their mouth? (initial)	
Nebuliser make	Spirometer make
Predicted FEV ₁	Predicted FVC
Post B ₂ FEV ₁ % predicted	Post B ₂ FEV ₁ /FVC (actual)
Post B ₂ FEV ₁ / Predicted FEV ₁ x 100	Post B ₂ FEV ₁ /Post B ₂ FVC=%
/ =%	= %_
B ₂ dose and time	15% fall from Baseline FEV ₁
	FEV ₁ : x 0.85 =
Agent used (circle)	Nebuliser Output Pre weight - Post weight / cumulative time
4.5% saline 0.9% saline	/=

Saline nebulised time	F	EV ₁ effo	rt	% fall from	Sputum	B ₂ required?	Recovery
	1	2	3	baseline	produced	Dose	FEV ₁
		_	_	FFV ₁	(ves or no)	Time paused	(post B ₂)
Post Ba					SS	rine pudeou	(poor 02)
1 031 02							
30 sec					SP		
1 min					SP		
2 min					SP		
4 min					SP		
4 min					SP		
4 min					SP		
			,		,		,
Pre B2FEV1/FVC					/		
Baseline (Post B ₂) FE			1		1		1

Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VI91	

COMMON COLD QUESTIONNAIRE (COMPLETE ONLY IF THERE IS A SUSPECTED VIRUS)

SUBJECT No:	Date:	INITIALS:	

In the past two days have you experienced any of the following:

		NONE	MILD	MODERATE	SEVERE
A	General Symptoms: 1. Fevers 2. Chills 3. Muscle pains				
в.	Nasal Symptoms:1.Watery eyes2.Runny nose3.Sneezing				
c.	Throat Symptoms: 1. Sore throat				
D.	Chest Symptoms: 1. Cough 2. Chest pain				
E.	Photophobia:				

- A <u>probable</u> viral infection is where there are <u>moderate</u> symptoms noted in <u>at least two</u> of the above four categories <u>or mild symptoms</u> noted in <u>three or more</u> categories.
- A possible viral infection is where mild symptoms are noted in one category plus a cough.

Probable Viral:	Yes	No	
Possible Viral:	Yes	No	

Infected Controls must have a probable or possible infection

All other subjects must have none of the symptoms listed with the exception of cough - IF RETURN A POSITIVE RESPONSE PLEASE RE-BOOK FOR FOUR WEEKS TIME

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
10			Mart		
IU		DAIE//	¥1311		

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA VISIT 1 PART B

VISIT 1 CHECKLIST	Sign Initials
Date of Visit 1 Part B/	
Inclusion/Exclusion criteria	
Anxiety and Depression assessments	
Dysfunctional breathing (Nijmegen)	
SGRQ	
ACQ	
AQLQ	
Allergy Skin Prick Test	
FENO	
Body Composition (DXA)	
Bioelectrical Impedance Analysis (BIA)	
Trunk strength Tests	
Respitrace	
Saline Challenge	
Monitored	

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE						
ID	INITIALS		//			
Bloods 1x9ml red serum tube for IgE (initial)						
		ECG				
ECG completed	(initial)	_				
	Feno (use Niox)					
Sample 1		ppb	Ambient eNO		_	
Sample 2		ppb	Last oral intake		hours	
Sample 3		_ppb	Last bronchodi	lator	hours	
Average		ppb				
HR QOL - SGRQ						

Scored on - IPBM Laptop Vanessa's laptop (please circle)

Remind patient to answer the questions relating the answers to the last month, not the last year.

Symptoms	
Activity	
Impacts	
Total	

Phenotype Based Management of Severe Persistent Asthma					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID INITIALS DATE/ VISIT					

HOSPITAL ANXIETY AND DEPRESSION SCALE

I feel tense or 'wound up:	Α	I feel as if I am slowed down:	D
Most of the time	3	Nearly all the time	3
A lot of the time	2	Very often	2
Time to time, occasionally	1	Sometimes	1
Not at all	0	Not at all	0
I still enjoy the things I used to enjoy:	D	I get a sort of frightened feeling like 'butterflies in the stomach':	Α
Definitely as much	0	Not at all	0
Not quite so much	1	Occasionally	1
Only a little	2	Quite often	2
Not at all	3	Very often	3
I get a sort of frightened feeling as if something awful is about to happen:	Α	I have lost interest in my appearance:	D
Very definitely and quite badly	3	Definitely	3
Yes, but not too badly	2	I don't take as much care as I should	2
A little, but it doesn't worry me	1	I may not take quite as much care	1
Not at all	0	I take just as much care as ever	0
I can laugh and see the funny side of things:	D	I feel restless as if I have to be on the move:	Α
As much as I always could	0	Very much indeed	3
Not quite as much now	1	Quite a lot	2
Definitely not so much now	2	Not very much	1
Not at all	3	Not at all	0
Worrying thoughts go through my mind:	Α	I look forward with enjoyment to things:	D
A great deal of the time	3	As much as I ever did	0
A lot of the time	2	Rather less than I used to	1
From time to time but not too often	1	Definitely less than I used to	2
Only occasionally	0	Hardly at all	3
I feel cheerful:	D	I get sudden feelings of panic:	Α
Not at all	3	Very often	3
Not often	2	Quite often	2
Sometimes	1	Not very often	1
Most of the time	0	Not at all	0
I can sit at ease and feel relaxed:	Α	I can enjoy a good book or radio or TV programme:	D
Definitely	0	Often	0
Usually	1	Sometimes	1
Not often	2	Not often	2
Not at all	3	Very seldom	3

Phenotype Based Management of Severe Persistent Asthma					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VI3T		

DYSFUNCTIONAL BREATHING

NIJMEGEN QUESTIONNAIRE

Patient to complete

We would like you to think about your breathing symptoms. Please circle the score that best describes the frequency with which you experience the symptoms listed below:

	Never	Seldom	Sometimes	Often	Very Often
Chest pain	0	1	2	3	4
Feeling tense	0	1	2	3	4
Blurred vision	0	1	2	3	4
Dizziness	0	1	2	3	4
Confusion or loss of touch with reality	0	1	2	3	4
Fast or deep breathing	0	1	2	3	4
Shortness of breath	0	1	2	3	4
Tightness across chest	0	1	2	3	4
Bloated sensation in stomach	0	1	2	3	4
Tingling in fingers and hands	0	1	2	3	4
Difficulty in breathing or taking a deep breath	0	1	2	3	4
Stiffness or cramps in fingers and hands	0	1	2	3	4
Tightness around the mouth	0	1	2	3	4
Cold hands or feet	0	1	2	3	4
Palpitations in the chest	0	1	2	3	4
Anxiety	0	1	2	3	4

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VISIT	

ALLERGY HISTORY

Do you or have you had any of the following conditions?

	NEVER	CURRENT	PAST	
Persistent cough (>3/12 of last				NOTES:
12)				
Hayfever				
Eczema				
Allergic conjunctivitis				
Nasal polyps				

Breathing Assessment and Respitrace

Does patient have a pacemaker? If yes do not complete respitrace.

Respiratory rate				
O2 Saturation				
Contribution of upper chest to tidal vol	ume		%	
Contribution of lower ribcage/abdome	n to tidal	volume	%	
Nasal or mouth breathing (circle)?	Nasal		Mouth	
Posture (circle)		Normal		
		Head forw	/ard	
		Increased	thoracic	kyphosis
		Reduced	lumbar lo	ordosis
		Increased	lumbar	ordosis
Thoracic ROM (circle)		Reduced		Normal
Accessory muscle use (circle)		Yes	No	
General observations				

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

ALLERGY SKIN PRICK TEST

Has the participant taken Antihistamines within the past 5 days? Yes No

(Hismanal 6 weeks)

If yes provide details do not continue test and reschedule test. How long since last antihistamine taken?

ALLERGY SKIN PRICK TEST

Has the participant taken Antihistamines within the past 5 days? (Hismanal 6 weeks) No

Yes

If **yes** provide details do not continue test and reschedule appointment. How long since last antihistamine taken?

Start Time:

Test	Weal Size (mm) x (mm)
CONTROLS	
Desitive Control (measure of 10 mins)	~
Positive Control (measure at 10 mins)	×
Negative Control (measure at 15 mins)	Х
ALLERGENS (measure at 15 mins)	
Aspergillus mix	Х
Alternata	Х
Dust mite (DP)	Х
Cockroach mix	Х
5 grasses	Х
ATOPY positive if (any allergen weal ≥ 3mm)	Yes No
Performed By:	

		IN IT ALC	DATE	10
		INITIALS	DAIE//	
			Asthene Control Overstingeneite	
Date Please	answer que	stions 1-6.	Asuma control Questionnaire	
Circle t	the number (of the response that best de	escribes how you have been during the	ne past week.
1	On average	ge, during the past week, he	ow often were you woken by your ast	hma during the night?
				1 Hardly ever
				2 A few minutes
				3 Several times 4 Many times
				5 A great many times
	0	and when the produced by b		6 Unable to sleep because of
2.	the morning	je, during the past week, he nd?	ow bad were your astnma symptoms	0 No symptoms
				1 Very mild symptoms
				2 Mild symptoms
				4 Quite severe symptoms
				5 Severe symptoms
	In conservation	during the next week, how	limited were you in your activities had	6 Very severe symptoms
,	in general,	during the past week, now	innited were you in your activities bed	0 Not limited at all
				1 Very slightly limited
				2 Slightly limited 3 Moderately limited
				4 Very limited
				5 Extremely limited
1	In general	during the past week, how	v much shortness of breath did you e	6 Totally limited
	your asthr	na?		0 None
				1 Very little
				3 A moderate amount
				4 Quite a lot
				5 A great deal
5	In general	during the past week, how	w much of the time did you wheeze?	6 A very great deal
		,	,,	0 Not at all
				1 Hardly any of the time
				3 A moderate amount of the
				4 A lot of the time
				5 Most of the time
ò.	On average	ge, during the past week, he	ow many puffs of short-acting bronch	odilator (eg Ventolin)
	Have you	used each day?		0 None
				1 1-2 puffs most days
				2 3-4 puffs most days
				3 5-8 puffs most days 4 9-12 puffs most days
				5 13-16 puffs most days
				6 More than 16 puffs most da
To be (completed by	y a member of the clinic sta	ff	
7	FEV, pre-	bronchodilator		0 > 95% predicted
		Esta d		1 95-90%
	FEV ₁ pred	acted		2 89 -80%
	FEV. % p	redicted		3 /9-/0% 4 69-60%
	(Record a	ctual values on the dotted I	ines	5 59-50%
	(1.000101010	the EEV 0/ predicted in th	a new description (C = COO/ and intend

PHENOTYPE THE UNIVERS	BASED MANAGEMENT OF SEVERE PERSIST SITY OF NEWCASTLE HUNTER NEW	ent Asthma. 'England Area Health S	ERVICE		
ID	INITIALS	DATE_		VIsit	
		1			
	Juniper Asthma Quali	ty of Life Ques	tionnaire (A	QLQ) (Standardised)
1. Please (such as	e indicate how much you ha hurrying, exercising, runnin	ive been limited b ig up stairs, sport	y your asthma in during the last :	strenuous activities 2 weeks. Green card	
2. Please walking, I	e indicate how much you ha housework, gardening, sho	ive been limited b pping, climbing st	y your asthma in airs) during the I	moderate activities (suc ast 2 weeks. Green card	:has d
3. Please talking, p	e indicate how much you ha laying with pets/children, vi	ive been limited b siting friends/relat	y your asthma in ives) during the	social activities (such as last 2 weeks. Green car	s d
4. Please (such as	e indicate how much you ha tasks that you have to do a	we been limited b t work) during the	y your asthma in last 2 weeks. G	work related activities reen card	
5. Please Green ca	e indicate how much you ha ard	we been limited b	y your asthma in	sleeping during the last	2 we
6. How m Red card	nuch discomfort or distress I	have you felt over	the last 2 week	s as a result of chest tigh	ntness
7. In gen Blue car	eral how often during the la d	st 2 weeks have y	/ou felt concerne	ed about having asthma?	,
8. How of Blue car	ften during the last 2 weeks d	s did you feel shor	t of breath as a	result of your asthma?	
9. How of of being (ften during the last 2 weeks exposed to cigarette smoke	did you experien Blue card	ce asthma symp	otoms as a result	
10. How	often during the last 2 weel	ks did you experie	nce a wheeze ir	your chest? Blue card	
11. How because	often during the past 2 wee of cigarette smoke? Blue o	eks did you feel ye ard	ou had to avoid a	a situation or an environr	ment
12. How Red card	much discomfort or distress	s have you felt ove	er these 2 past v	veeks as a result of coug	hing?
13. How	often during the past 2 wee	eks did you feel fru	istrated as a res	ult of your asthma? Blue	card
14. How	often during the past 2 wee	eks did you experi	ence a feeling of	chest heaviness? Blue	card
15. How for your a	often during the past 2 wee asthma? Blue card	eks did you feel co	ncerned about t	he need to take medicati	ions
16. How	often during the past 2 wee	eks did you feel th	e need to clear y	our throat? Blue card	
17. How exposed	often during the past 2 wee to dust? Blue card	eks did you experi	ence asthma syr	mptoms as a result of bei	ing

Continued on next page.

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VIsit	

18. How often during the past 2 weeks did you experience difficulty breathing out as a result your asthma? Blue card

19. How often during the past 2 weeks did you feel you had to avoid a situation or an environment because of dust? Blue card

20. How often during the past 2 weeks did you wake up in the morning with asthma symptoms? Blue card

21. How often during the past 2 weeks did you feel afraid of not having your asthma medication available? Blue card

22. How often during the past 2 weeks were you bothered by heavy breathing? Blue card

23. How often during the past 2 weeks did you experience asthma symptoms as a result of the weather

or air pollution outside? Blue card

24. How often during the past 2 weeks have you been woken at night by your asthma? Blue card

25. How often during the past 2 weeks have you had to avoid or limit going outside because of the weather or air pollution? Blue card

26. How often during the past 2 weeks did you experience asthma symptoms as a result of being exposed to strong smells or perfume? Blue card

27. How often during the past 2 weeks did you feel afraid of getting out of breath? Blue card

28. How often during the past 2 weeks did you feel you had to avoid a situation or environment because of strong smells or perfume? Blue card

29. How often during the past 2 weeks has your asthma interfered with getting a good night sleep?

30. How often during the past 2 weeks have you had the feeling of fighting for air? Blue card

31. Think of the overall range of activities that you would have liked to have done during the past 2 weeks.

How much has your range of activities been limited by your asthma? Yellow card

32. Overall, among all the activities that you have done during the past 2 weeks, how limited have you been by your asthma? Green card

Thank you for completing this questionnaire.

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	Visit	

Dexa pre-test questionnaire

PRIOR TO SCAN

Waist Circumference (cm):

The participant should empty their bladder, remove all jewellery, hairpins, glasses, underwire bras and put on a gown

Previous Bone	Density or	Yes		No	
Body Composi	tion Scan:				
When:		Result:			
Previous Medi	ical History:				
Fractures:		Yes		No	
Details/Cause:					
Previous lumb	er spine x-	Yes		No	
ray?					
Date:			Result:		
Kidney	Yes	No	Liver Disease:	Yes	No
disease:					
Overactive	Yes	No	Arthritis	Yes	No
Thyroid					
Parathyroid	Yes	No	Malabsorptio	Yes	No
disease			n (Coeliac		
			Disease)		
Other Medical	liness or	Yes		NO	
Major operation?				No	
Have you had	an X-ray or CI	Yes		NO	
scan with cont	trast material				
such as bariun	n in the last 7				
days?		and 72hm and DEVA SOD Among			
(If 'Yes' delay D	EXA scan for at le	east 72hrs, see D	EXA SOP Append	lix 2 for minimum	n delay times)
Have you had	any nuclear	Yes		NO	
medicine scan	s in the past 3				
days?			5Y4 005 4		11 12 1
(If Yes' delay D	EXA scan for at le	east 48hrs, see D	EXA SOP Append	lix 2 for minimum	n delay times)
Have you ever fractured		Yes – Both / Right / Left		NO	
your hip, had a hip					
replacement, or do you have					
					1.15
(If bilateral hip replacement, pins or screws present do not perform femur measurement, if					
Do you borro o	ny lumbar	Nor Present Scar	rother hip)	No	
coning implant	ny lumbar	162		NO	
spine implants, pins or have					

THE UNIVERSITY OF NE	ANAGEMENT OF SEVERE PERSISTENT ASTHMA WCASTLE HUNTER NEW ENGLAND A	REA HEALTH SERVICE	-
ID	INITIALS	DATE//	VI:11
pins, a pacemak defibrillator? If 'Yes' List:	er or		

(DEXA is safe for permanent page	cemakers or impl	antable defibrilla	itors)		
Have you been on oral	Yes		No		
steroid treatment?					
What treatment:	Dose:		Duration:		
Are you on treatment for	Yes		No		
Osteoporosis?					
What treatment:	Year commence		ed:		
Do you take Calcium	Yes		No		
Supplements?					
(If yes, have they taken any in the last 24hrs, if yes delay scan for 24hrs)					
Menopausal?	Yes		No		
Age of menopause:		LMP:			
Are you or could you be	Yes		No		
pregnant?					
(If 'Yes', do not scan, subject no	t eligible)				

BIA

Has participant exercised / or showered in the past 2 hours?_____ If yes, postpone for at least 2 hours

Has participant eaten in the last 2 hours?_____ If yes, postpone for at least 2 hours Has participant emptied bladder prior to test?_____ If no, perform now Has participant wiped hands and feet with wipes?_____ If no, perform now

Does participant have a pacemaker or other implanted electrical or metal devices?

Remind participant to remove all jewellery, extra clothing, stockings and empty pockets.

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA						
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE	A HEALTH SERVICE				
ID	INITIALS	DATE//	Visit			

DEXA - TOTAL BODY SCAN

BMI (kg/m²):	
Classification:	
Total Tissue % Fat:	
Trunk Tissue % Fat:	
Android Tissue % Fat:	
Gynoid Tissue % Fat:	
Total Tissue (g):	
Total Fat (g):	
Total Lean (g):	
Total BMC (g):	
Fat Free (g):	

Fat Free Mass Index :

some minerar conter	it in Kg –		
Height (m) ²			
cle Mass Index :			
lean soft tissue both arms+ lean soft tissue both legs in Kg=			
m) ²			
7.26Ka/m ²)	Vec	No	
	n) ² cle Mass Index : <u>ean soft tissue both</u> n) ² 7.26Kg/m ²)	n) ² cle Mass Index : <u>ean soft tissue both legs in Kg=</u> n) ² 7.26Kg/m ²) Yes	n) ² cle Mass Index : <u>ean soft tissue both legs in Kg=</u> n) ² 7.26Kg/m ²) Yes No

(Women: ≤5.45Kg/m²)

PHENOTYPE BASED MANAGEMENT OF SEVERE PERSISTENT ASTHMA			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT

Core Strength Tests

A) Flexion endurance test: Patient is positioned as if commencing a sit up. Patient is instructed to raise upper body off plinth but to keep spine in neutral position. Patient is instructed to hold up as long as possible. Maximal endurance is timed, recorded and compared to normative data.

Time held:....

B) Sorgenson test: Patient prone with trunk off the edge of the plinth. Patient instructed to lift trunk so that the body is level with the plinth and legs and hold the position in neutral for as long as possible. Maximal endurance is timed, recorded and compared to normative data.

Time Held:....

C) Side bridge endurance test: Patient is positioned in the side bridge position and is instructed to raise hips off plinth and hold as long as possible. Maximal endurance is timed, recorded and compared to normative data.

lime	Held:	

Dynamometry <mark>(</mark> Shoulder)	Push	Dynamometry (Leg)
	Pull	Attempt 1
	- un	Attempt 2

Termination criteria and Contraindications for trunk endurance tests

- Subject no longer able to sustain position
- Subject unable to assume position on practice trial
- Subject terminates the test
- Subject reports pain- staff are to terminate the test immediately and document the time held until pain commenced.
- Subject refuses to attempt test
- Signs of poor perfusion
- Heart rate exceeds pre defined HR maximum (220-age)
- Onset of angina or angina symptoms
- SpO2<88% at rest
- Test will not be performed if there are any contraindications to exercise. This will be screened prior to walk test. Contraindications include HR>125 bpm at rest, SpO2<88% prior to test, physical disability preventing safe performance, acute/unstable angina, RR excessive or BORG >4 at rest.

Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID INITIALS		DATE//		

The 3 Incontinence Questions (3IQ) Assessment Tool

The 3IQ is a patient questionnaire that helps your doctor distinguish urgency incontinence from stress incontinence. It should take no more than a couple of minutes. Complete the quiz and bring it to your next appointment.

1. During the last 3 months, have you leaked urine (even a small amount)? O Yes O No (if this response is marked, the 3IQ test is complete)

2. During the last 3 months, did you leak urine (check all that apply):

- When you were performing some physical activity, such as coughing, sneezing, lifting, or exercising?
- When you had the urge or the feeling that you needed to empty your bladder, but you could not get to the toilet fast enough?
- O Without physical activity and without sense of urgency?

3. During the last 3 months, did you leak urine most often (check only one):

- When you were performing some physical activity, such as coughing, sneezing, lifting, or exercising?
- When you had the urge or the feeling that you needed to empty your bladder, but you could not get to the toilet fast enough?
- O Without physical activity and without a sense of urgency?
- O About equally as often with physical activity as with a sense of urgency?

Definitions of type of urinary incontinence are based on responses to question 3.

Response to Question 3	Type of Incontinence
Most often with physical activity	Stress only or stress predominant
Most often with the urge to empty the bladder	Urgency only or urgency predominant
Without physical activity or sense of urgency	Other cause only or other cause predominant
About equally with physical activity and sense of urgency	Mixed

SA CRF V1 PART B VERSION 2 OF 2

PAGE 14 OF 16

	Phenotype Based Management of Severe Persistent Asthma				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
	ID	INITIALS	DATE//	VIsit	

SALINE CHALLENGE (IF V1 post bronchodilator FEV₁>.5L Date:

Asthma medication and time las	t taken	1.		
		2.		
		3.		
Has the patient rinsed their mou	th? (initial)			
Nebuliser make		Spirometer	make	
Predicted FEV ₁ Predicted FVC			15% fall from FEV ₁	
Agent used (circle)		Pre weight - Post weight = Provocation dose		
4.5% saline 0.9	9% saline			
		If 15% Drop Provocation	<u>):</u> I Dose/Total Time = Saline dose/min.	
		Saline dose drop dose	/min x Saline neb time (pre-drop) =	

Saline nebulised		FEV ₁		% fall from	Sputum	B ₂ required?	Recovery
time	1	2	3	baseline	produced	Dose	FEV ₁
				FEV ₁	(yes or no)	Time paused	(post B ₂)
Baseline (Pre B₂)					SS		
30 sec					SS		
1 min					SP		
2 min					SP		
4 min					SP		
4 min					SP		
4 min					SP		

Time	FEV ₁	% fall from baseline
5 mins		
10 mins		
15 mins		
30 mins		

Monitor Recovery (All patients) 400 mcg Ventolin given: (time)_____

COMMON COLD QUESTIONNAIRE (COMPLETE ONLY IF THERE IS A

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE (August 2002)

SHORT LAST 7 DAYS SELF-ADMINISTERED FORMAT

FOR USE WITH YOUNG AND MIDDLE-AGED ADULTS (15-69 years)

The International Physical Activity Questionnaires (IPAQ) comprises a set of 4 questionnaires. Long (5 activity domains asked independently) and short (4 generic items) versions for use by either telephone or self-administered methods are available. The purpose of the questionnaires is to provide common instruments that can be used to obtain internationally comparable data on health-related physical activity.

Background on IPAQ

The development of an international measure for physical activity commenced in Geneva in 1998 and was followed by extensive reliability and validity testing undertaken across 12 countries (14 sites) during 2000. The final results suggest that these measures have acceptable measurement properties for use in many settings and in different languages, and are suitable for national population-based prevalence studies of participation in physical activity.

Using IPAQ

Use of the IPAQ instruments for monitoring and research purposes is encouraged. It is recommended that no changes be made to the order or wording of the questions as this will affect the psychometric properties of the instruments.

Translation from English and Cultural Adaptation

Translation from English is supported to facilitate worldwide use of IPAQ. Information on the availability of IPAQ in different languages can be obtained at www.ipaq.ki.se. If a new translation is undertaken we highly recommend using the prescribed back translation methods available on the IPAQ website. If possible please consider making your translated version of IPAQ available to others by contributing it to the IPAQ website. Further details on translation and cultural adaptation can be downloaded from the website.

Further Developments of IPAQ

International collaboration on IPAQ is on-going and an *International Physical Activity Prevalence Study* is in progress. For further information see the IPAQ website.

More Information

More detailed information on the IPAQ process and the research methods used in the development of IPAQ instruments is available at www.ipaq.ki.se and Booth, M.L. (2000). Assessment of Physical Activity: An International Perspective. Research Quarterly for Exercise and Sport, 71 (2): s114-20. Other scientific publications and presentations on the use of IPAQ are summarized on the website.

SHORT LAST 7 DAYS SELF-ADMINISTERED version of the IPAQ. Revised August 2002.

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE

We are interested in finding out about the kinds of physical activities that people do as part of their everyday lives. The questions will ask you about the time you spent being physically active in the last 7 days. Please answer each question even if you do not consider yourself to be an active person. Please think about the activities you do at work, as part of your house and yard work, to get from place to place, and in your spare time for recreation, exercise or sport.

Think about all the vigorous activities that you did in the last 7 days. Vigorous physical activities refer to activities that take hard physical effort and make you breathe much harder than normal. Think only about those physical activities that you did for at least 10 minutes at a time.

During the last 7 days, on how many days did you do vigorous physical 1. activities like heavy lifting, digging, aerobics, or fast bicycling?

	No	via	oro

vigoroue	nhy	(ci/

days per week

How much time did you usually spend doing vigorous physical activities on one 2 of those days?

_hours per day
_minutes per day
Don't know/Not sure

Think about all the moderate activities that you did in the last 7 days. Moderate activities refer to activities that take moderate physical effort and make you breathe somewhat harder than normal. Think only about those physical activities that you did for at least 10 minutes at a time.

3. During the last 7 days, on how many days did you do moderate physical activities like carrying light loads, bicycling at a regular pace, or doubles tennis? Do not include walking.

SHORT LAST 7 DAYS SELF-ADMINISTERED version of the IPAQ. Revised August 2002.

4.	How much time did you usually spend doing moderate physical activities on one
	of those days?

Don't know/Not sure

Think about the time you spent **walking** in the **last 7 days**. This includes at work and at home, walking to travel from place to place, and any other walking that you might do solely for recreation, sport, exercise, or leisure.

5. During the **last 7 days**, on how many days did you **walk** for at least 10 minutes at a time?

6. How much time did you usually spend walking on one of those days?

 hours per day
 _minutes per day
Don't know/Not sure

The last question is about the time you spent **sitting** on weekdays during the **last 7 days**. Include time spent at work, at home, while doing course work and during leisure time. This may include time spent sitting at a desk, visiting friends, reading, or sitting or lying down to watch television.

7. During the last 7 days, how much time did you spend sitting on a week day?

hours per day
minutes per day

Don't know/Not sure

This is the end of the questionnaire, thank you for participating.

SHORT LAST 7 DAYS SELF-ADMINISTERED version of the IPAQ. Revised August 2002.

Supplemental Digital Content 1

Past-day Adults' Sedentary Time (PAST) Questionnaire

Section 2 Sedentary Time

Next I will ask you about particular activities you did <u>yesterday</u> while <u>sitting down or lying</u> <u>down</u>. Please note that this does not include sleeping, either in bed or if you fell asleep while doing another activity, for example watching television.

Interviewer:	Record	vesterdav's date	
		Jeaner any a mare	

Yesterday's date:

We are going to ask you about different times when you may be sitting or lying down: when working, travelling, watching TV, using the computer, and when doing other activities. For each of these, only count the time when this was your main activity. For example, if you watched TV and ate dinner at the same time, this might be TV or meal time, but not both. Your answers can be given in hours and minutes. Try to report only the time you spent sitting or lying down and not time you spent getting up for breaks (e.g. coffee, bathroom).

ST 1. The next question is about sitting for work. Did you work in a paid position yesterday?

Interviewer: if participant did not work yesterday, skip to ST 4. If they did work yesterday continue to ST 2.

Time spent for work

ST 2. How long in total did you spend at your workplace or working from home yesterday, including meal and snack breaks?

|--|

Sitting for work

ST 3. How long were you sitting at your workplace or working from home yesterday, including during meal and snack breaks?

Interviewer: if the respondent has difficulty, you can reassure them that their best estimate will be OK.

**Interviewer Check: the time for ST3 cannot be longer than ST2. If ST3 is exactly the same as ST2 (they say they sat for the whole time at work) prompt 'So, can I confirm that you sat for the whole time at work without getting up?'

Sitting for Transport

ST 4. Thinking again of yesterday, please estimate the total time that you spent sitting to travel from one place to another. Please include sitting and waiting for transport. Do not include any time you were standing up while travelling or waiting.

Interviewer clarification: transport includes public and private, waiting for any type of transport and travel to all locations. This would not include time spent travelling as part of work which was reported in ST3 e.g. taxi driver

Television Viewing

ST 5. Please estimate the total time you spent sitting or lying down to watch TV or DVDs or play games on the TV, such as play station yesterday? This includes if you watch TV in bed.

Remember, your answer can be given in hours and/or minutes.

hours

minutes

Computer, Internet, Electronic Games

ST 6. Please estimate the total time yesterday that you spent sitting or lying down and using the computer. For example, include time spent playing games, internet activities.

Interviewer: if the respondent reported working include the prompt 'Do not include time spent doing paid work on the computer as this should have been included in the previous question about sitting for work.'

Reading

ST 7. Please estimate the total time yesterday that you spent sitting or lying down while reading during your leisure time. Include reading in bed but do not include time spent reading for paid work.

Hobbies

ST 8. Please estimate the total time yesterday that you spent sitting or lying down for hobbies. For example, doing art, craft or cross words.

Sitting/lying for other purposes

ST 9. We are interested in any other sitting or lying down that you may have done that you have not already told us. For example this could include socializing with friends or family including time on the telephone; eating meals; or listening to music.

Again thinking of yesterday, please estimate the total time that you spent sitting or lying down <u>NOT</u> including time that you have told us about in the previous answers.

Interviewer: if the respondent has difficulty, you can reassure them that their best estimate will be OK.

That's all the questions we have for you about the time you spent sitting or lying down yesterday. Thinking back on your answers, is there anything you would like to change?

Interviewer: This will give the participant an opportunity to confirm that they have given an accurate response to each question. Please change responses as required.

If the participant has reported sitting for over 16 hours in the day prompt them to consider their answers by saying 'I've got here that you spent sitting yesterday. Are there any times where you might have over-estimated or doubled up on reporting sitting time?'

APPENDIX X: Case Record File for bronchiectasis and healthy control participants

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP)			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID		DATE//	VISIT

PARTICIPANT ID:	MRN:
Surname:	First Name:
Middle Name:	-
Contact Details:	
Street Address:	
Suburb:	Post Code:
Phone Home:	Work:
Mobile:	Email:
Sex: Male Female	
Date of Birth://	
GP Name and Address:	

✓<u>REMOVE THIS SHEET FROM CRF</u>

FILE IN SUBJECT DEMOGRAPHICS FOLDER

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID		DATE//	VISIT

Investigating BronchiEctasis – Evaluating Phenotypes (IBEEP) VISIT 1 PART A

VISIT 1 CHECKLIST	Sign Initials
Date of Visit 1 Part A//	
Demographics	
Inclusion/Exclusion	
Clinical Data	
Other Medications	
Exacerbation History	
Mucus Hyper-secretion	
Inhaler technique	
Smoking (ExCO collected)	
Allergy Skin Prick Test	
Vital Signs	
Spirometry	
Saline Challenge	
Body Composition (DXA & BIA)	
Systemic Inflammation (blood collected and POC)	
Physical Activity Monitor	
Book HRCT Scan (if Not Done in the past 12months)	
Adherence	
International Physical Activity Questionnaire	
Dyspnoea	
Laryngeal Dysfunction Questionnaire	
Nutrition	
Sleep	
Patient Experience & Patient related problems	
Monitored	

IBEEP CRF V1 VERSION 10 OF 10

PAGE 3 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)			
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE			
ID		DATE//	VISIT

PARTICIPANT DEMOGRAPHICS --- VISIT 1

SUBJECT ID: _____ SUBJECT INITIALS: _____

** See Subject demographics file for contact details.

Sex:	Male	Female

Date of Birth: ____/___/____

Age of bronchiectasis onset :

Measure height twice. Ask the subject to take a deep breath in while performing the measurement so they get to their full height. Both measures must be within 0.5cm of each other, if not repeat a third time. Then record the average of the 2 measures; this is the measure you will report

Height (without shoes):	•	cm
Height (without shoes):	•	cm
Average:	•	cm
Weight (without shoes):		kg
BMI:	•	kg/m2

Entry Spirometry:

	Litres	% predicted
Dre BD FEV/1		
FIC DDT EVI		
Pre BD FVC		
Pre FER		
(decimal place not %)		
IBEEP CRF V1 VERSION 10 OF 10		PAGE 4 OF 4

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

INCLUSION CRITERIA Subjects must fulfil <u>ALL</u> of the following to be included in the study. YES NO			EXCLUSION CRIT Subjects with <u>any</u> of the follo includ	ERIA wing will <u>not</u> be led in the study. YES NO
Able to provide informed written consent (file signed consent)			Inability to attend study visits	
Confirmed diagnosis of bronchied OR healthy control participant (please circle)	tasis		Diagnosed with a respiratory dise asthma or COPD (e.g. active tub pulmonary fibrosis)	ease other than erculosis,
Aged ≥18 years.			Aged < 18 years	

IBEEP CRF V1 VERSION 10 OF 10

PAGE 5 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

MEDICAL HISTORY/COMORBIDITIES

Area	Yes	No	Specify: Condition / Procedure (Year)
Ear, nose and throat Allergic Rhinitis, nasal polyps, hearing loss			
Eye Glasses, cataracts, eye surgery etc.			
Respiratory Asthma, persistent cough, pulmonary fibrosis, lung cancer, bronchiectasis, interstitial lung disease			
Cardiovascular BP issues, high cholesterol, MI, angina, coronary heart disease, congestive heart failure, atrial fibrillation/ flutter			
Gastrointestinal IBS, intolerances, lap band, GORD, gastric/duodenal ulcers, oesophageal cancer			
Hepatobiliary / Pancreas Hepatitis, cirrhosis, bile disorders, pancreatic cancer			
Urology Kidney/bladder issues, UTIs, prostate, incontinence			
Reproduction Hysterectomy, fertility problems, caesarian sections, breast cancer, is patient still menstruating?			
Neurology Stroke, chronic headaches, MS.			
Blood and Lymphatic Haemachromatosis (iron overload), lymph node removal, anaemias.			
Endocrine and Metabolic Diabetes, hormonal issues.			
Musculoskeletal Muscles, bones, joints, arthritis, broken bones.			
Skin Eczema, dermatitis, psoriasis, burns.			
Psychiatry Mental health issues. Depression/anxiety			
Non – site specific Viral illness such as measles, chicken pox.			
Drug Allergies? Known or possible drug allergies			
All other cancers			
Any other illnesses			
L		I	1

CHARLESON (CCI)	BODE
IREEP CRE V1 VERSION 10 OF 10	PAGE 6 OF 47

EEP CRF V1 VERSION 10 OF 10

PAGE 6 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	visir	

CLINICAL DATA: RESPIRATORY MEDICATIONS		
Please circle and indicate specific device*, unit dose, puffs per occasion and occasions per day <u>in numbers not abbreviations</u> .	Current?	
Short acting β ₂ -agonist: (E.g. Ventolin, Asmol, Airomir)	Yes/ No	
Long acting β ₂ -agonists: (E.g. Serevent, Foradile, Oxis, Onbrez)	Yes/ No	
Leukotriene modifier: (E.g. Singulair)	Yes/ No	
Short acting anti-cholinergic: (E.g. Atrovent)	Yes/ No	
Long acting anti-cholinergic: (E.g. Spiriva, Seebri, Bretaris)	Yes/ No	
Long acting β ₂ -agonists/ Long acting anti-cholinergic (E.g. Ultibro, Anoro)	Yes/ No	
Nasal Steroids:	Yes/ No	
Theophylline: (Eg. Austyn, Neulin, Theo-Dur)	Yes/ No	
Oral Steroids (Eg. Prednisone, Panafcort, Solone) Type: Dose: Reducing Dose?	Yes/ No	
Inhaled Corticosteroids: (E.g. Qvar, Pulmicort, Flixotide, Alvesco) Type:		
Device: Dose (strength, puffs, frequency):	Yes/ No	
e.g. Flixotide 250mcg, 2 puffs bd=250 x 2 x 2=1000mcg TDD		
Dose (strength, puffs, frequency):	Yes/ No	
Device		
How many days in the last week did you use your reliever medication?	/7	
How many times on those days did you use your reliever?		
Other respiratory medications (Device, Drug, strength, dose, frequency)	Yes/No	

* Device: Pressunsed Metered Dose Inhaler (MDI); Turbuhaler (Turb); Autohaler (Auto); Nebuliser (Neb); Accuhaler (Acc); Aeroliser (Aero); Handihaler (Hand); Breezehaler; Genuair; Ellipta; Rapihaler; Spacer; Oxygen/Concentrator.

IBEEP CRF V1 VERSION 10 OF 10

PAGE 7 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

OTHER MEDICATIONS

Check that new medications do not appear on list of prohibited concomitant medications.

Drug	Route and *dosage form	Total Daily Dose (units) (=Unit dose * dose per occasion * occasion per day)	Indication	Start date/Stop date/comments

* Dosage form: Oral (tablets/capsule, liquids); Topical (creams, ointments); Eye, ear & nose (eye drops, ear drops, nasal spray); Inhalation (MDI, Turb, Neb, Acc, Aero, Hand, Breezehaler, Genuair, Ellipta, Rapihaler, Spacer, Oxygen/ concentrator); Others (injections, suppositories, pessaries).

IBEEP CRF V1 VERSION 10 OF 10

PAGE 8 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE		
ID	INITIALS	DATE//	visit	

		EXACERBATION MODULE					
		Questions apply to the 12 months up to, and including today and relate to <u>your breathing / chest</u> only. (Participant to answer each question directly, symptom diary can be used to help complete the module if required)					
		Date Completed	:	[]	(dd/m	m/yyyy)	
In t	he last <u>1</u>	2 MONTHS have you	YES (√)	NO (√)	# of courses +occasions?	Start Date (for each event)	Stop Date (for each event)
1	1 Visited the Emergency Department for your <u>chest / breathing</u> ? (Not including those that led to hospital admission)						
2	Been admitted to hospital for your <u>chest /</u> <u>breathing</u> ?						
3	Taken oral corticosteroids for <u>chest/</u> <u>breathing</u> (>10mg for ≥ 3 days)?						
4	Taken a	antibiotics for <u>chest / breathing</u> ?					
5	Had an unscheduled visit to a GP for your <u>chest / breathing</u> ? <i>Ie. Unplanned</i> visit due to worsening symptoms. Not including those episodes that resulted in hospital admisison or ED visit.						
6	Taken oral corticosteroids ≥3 days or antibiotics for <u>chest / breathing</u> , as a result of the Written Action Plan being initiated? <i>Ie. Community treated exacerbations, without</i> <i>having consulted GP or attending ED/hospital.</i>						
7	Increased your <u>chest / breathing</u> medication for ≥ 2 days? IF YES, complete 6 A and B						
	6A. Increased reliever?						
_	6B. Incre	ased preventer?					
8	months	umber of exacerbations in 12					
		<i>P</i> Update ot	her medications log where required.				
Inc	ncreased symptoms in <u>the last 4 weeks</u> :		YES (√)	N0 (√)	For how many day have an increase	vs since your las in these symptol	t visit did you ms?
"		Cough					
8	Wheezing						
9	Dyspnoea						
10	Chest Tightness						
11	Produce Phlegm						
12	How m	uch phlegm to you produce each day? (circle)			Teaspoon 1 tblspo	on 2 tblspoons	% cup 1cup
13		What colour is it? (circle)			Clear White stained	Yellow Gree	n Blood-
14	Other If Yes, please details						

IBEEP CRF V1 VERSION 10 OF 10

PAGE 9 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

EXACERBATION MANAGEMENT

Yes / No

Hower	uou	hoon	proceribod	-	written	action	plan2	
пауе	vou	Deen	prescribeu	d	whiten	acuon	plane	

Do you use your WAP? Yes / No

If not why not?_

How many times have you used you WAP in the last 6 months_

Note to researcher: Please ask for a copy of the WAP. If the participant has undergone an education programme within the last 12 months please also ask for a copy of their action plan prior to enrolment in the education programme.

Mucous Hypersecretion

1. When you your chest that	don't have a co at is difficult to l	ld, do you usu oring up?	ally bring up ph	legm from your chest OR h	ave phlegm on Yes / No
If Yes:,1A. H	ow many days	in the past we	ek have you co	ughed up sputum/phlegm?	/7
2A. Are there	months in which	ch you have thi	s phlegm on m	ost days?	Yes / No
NB: "this phle	gm" refers to p	hlegm that is b	rought up AND)/OR phlegm that is stuck in	the chest.
lf Yes, ask bot	h Questions 21	3 & 2C; If No, s	kip to Dyspnea	1]	
2B. Do you bi	ing up this phle	egm on most d	ays for as much	h as three months each yea	r? Yes / No
20.10110001	nany years na	e you nau uns	phieght? (Circ	ie)	
Less than 2	/ears	2-5 ye	ars	More than 5 years	5
3. Have you p	roduced sputu	m/phlegm for n	nore than 3 cor	nsecutive months for 2 cons	ecutive years? Yes / No
4. How much	sputum/phlegr	n do you cough	up in the cour	se of a day?	
< Teaspoon	Teaspoon	1 tbispoon	2 tblspoons	½ cup 1 cup	
5. What part i	n the day do yo	ou cough up the	e most sputum/	/phlegm?	
Morning	afternoon	evening	all day	am and pm	
6. What colou	r is your sputu	m/phlegm at th	e most product	tive time?	
clear / white	/ yellow / gree	n / blood stair	ned		
7. What colou	r is your sputu	m/phlegm for th	ne rest of the ti	me?	
IBEEP CRF V1	ERSION 10 OF 10)		PAGE 10 OF 47	

INVESTIGATING BRONC THE UNIVERSITY OF NEW	HECTASIS – EVALUATING PHENOTYPES (IBEI VCASTLE HUNTER NEW ENGLAND A	EP) REA HEALTH SERVICE				
ID		DATE///		VISIT		
clear / white / yellow / green / blood stained Inhaler Technique						
Please assess	inhaler technique today.					
Please use placebo devices. Each box must be entered using the following choices;						
I = inadequate	A = adequate	O = optimal	NU – No	ot Used		
pMDI	Accuhaler		Handiha	ller		
Spacer	Autohaler		Nebulise	er		
Turbuhaler	Aerolizer		Other de	evice (specify)		
Number of devices used (peak flow <i>not</i> included)						
Note to researcher: refer to AMS inhaler device assessment sheet						

Smoking Module

Do you currently smoke? Yes / N	No	
If yes, time since last cigarette		(hours)
Have you ever smoked?	Yes / No	
If yes, how old were you when you b	egan smoking?	(years)
lf yes, how old were you when you g	ave up smoking?	(years)
How many cigarettes per day did/do	you smoke?	
Pack years = (Number of ci	garettes/20) x years smoked	i=
Calculation assumes 1 pack has 20	cigarettes. 1 pack year = 20 cigarette	es per day for one year
Exhaled carbon monoxide level	ppm (Pico m	eter)

IBEEP CRF V1 VERSION 10 OF 10

PAGE 11 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	VISIT	

ALLERGY HISTORY

Do you or have you had any of the following conditions?

	NEVER	CURRENT	PAST	
Persistent cough (>3/12 of last				NOTES:
12)				
Hayfever				
Eczema				
Allergic conjunctivitis				
Nasal polyps				

ALLERGY SKIN PRICK TEST

Has the participant taken Antihistamines within the past 5 days? (Hismanal 6 weeks)

Yes	L	No

If **yes** provide details do not continue test and reschedule appointment. How long since last antihistamine taken?

Start Time:

CONTROLS X Positive Control (measure at 10 mins) X Negative Control (measure at 15 mins) X ALLERGENS (measure at 15 mins) X Aspergillus mix X Alternata X
Positive Control (measure at 10 mins) X Negative Control (measure at 15 mins) X ALLERGENS (measure at 15 mins) X Aspergillus mix X Alternata X
Positive Control (measure at 10 mins) X Negative Control (measure at 15 mins) X ALLERGENS (measure at 15 mins) X Aspergillus mix X Alternata X
Negative Control (measure at 15 mins) X ALLERGENS (measure at 15 mins) X Aspergillus mix X Alternata X
ALLERGENS (measure at 15 mins) Aspergillus mix X Alternata X
Aspergillus mix X Alternata X
Alternata X
Alternata X
Dust mite (DP) X
Cockroach mix X
5 Grasses X
ATOPY positive if (any allergen week > 2mm) Ves No
ATOP T positive II (any allergen wear 2 smin) Tes No
Performed By:
IBEEP CRF V1 VERSION 10 OF 10 PAGE 12 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE
ID INITIALS DATE/ VISIT
VITAL SIGNS (Perform prior to spirometry)
Blood pressure (after resting for 5 mins):/mmHg Systolic Diastolic
Pulse (Heart Rate): bpm
Pulse Oximetry: %spO ₂
Temperature (tympanic):°C
Respiration rate: breaths per minute

(Partic	SPIROMETRY – Visit 1a (Participant required to withhold medications according to Section 5.2.1 Table 2 of Protocol)											
Spiromete	er Make	e:							As	sessor:		
Asthma M	edicatio	ons V	Vithheld?	Medication Name:								
Yes 🗌 🛛 No 🗖		No 🗆	Date & Time last taken:									
Dradictade			FEV ₁	(L):								
	Prec		eulcieu.		FVC	(L):						
	PRE-BRONCHODILATOR SPIROMETRY EFFORTS											
	1		2		3		4 5			6	7	8
FEV ₁ (L)												
FVC (L)												
Comment												
	BEST % Predicted (xx.x) Comment											
BEST Pre-B ₂ FEV ₁ (L FVC (L)		FEV ₁ (L)										
		FVC (L)										
[™] If FEV ₁	"If FEV1 < 1.0L OR < 40% Predicted, STOP Do not Continue- Contact supervisor re 0.9% Saline. Get Permission First!											

IBEEP CRF V1 VERSION 10 OF 10

PAGE 13 OF 47

INVESTIGATING BRONCHIECTASIS – EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
D	INITIALS	DATE//	VISIT		

SALINE CHALLENE AND INDUCTION Please refer to sputum challenge + induction flowchart for safety guidelines (Protocol Appendix C)									
🗆 No	t Perfo	rmed. I	Reason:						
		(ie. n NB: DC	Saline (to document NOT give b	challenge + ed evidence of pronchodilator p	• Induction VAO in last 10 ye prior to saline cha	ears) illenge			
Antihistamines Withheld? N/A (according to Section 5.2.1 Table 3 of Protocol)			Yes (No (co antihist.)	Continue) ontinue test, if inclu	ded, re	peat challenge a	at v2 + wit	hhold	
Mouth rinsed (x3) with water? Yes No			Nebuliser M	ake/Name:					
Asthma medications withheld Yes No			Saline Used	: 🗌 4.5% sal	ine		0.9%	saline	
Is the baseline best FEV ₁ (L) >1.0L AND \geq 40% predicted? Yes (continue) No (STOP Do not Continue- Contact supervisor ref 9% sal.) Get Permission First			ో 15% =	Calculate Sa fall from base 85% x baselin	fety s eline e FE\	Stop: FEV1 (L) /1 (L)			
Nebuliser Cup Weight (with saline + tubing)	F	Pre Weig	ht (a)	Post	Weight (g)	N	ebulised dose	(a)	Provocation
Spontaneous Sputum Sample Collected?			Collected?	· Ves (label 'SS' store in fridge start new specimen iar for SIS) □ No				ose (g)/PD15	
Saline nebulised time	FE	V1 (L)	efforts	% fall from Induced		B ₂ required? Recovery			
(adjust intervals if required up to a <u>total of</u> <u>15.5mins</u>)	1	2 optiona	3 al optional	baseline FEV1	Sputum (SIS) produced (Y/N)	Y/N	Dose (µg)	Pause (mins)	FEV ₁ , L (post B ₂)
Baseline Best FEV ₁ (L) (pre B ₂ - chall.; post B ₂ - Ind. only)			_						
1 min									
2 min									
4 min									
4 min									
4 min									
Cumulative Industion	Time	Ĺ,						_	
Cumulative Induction Time (mins): (total time on nebuliser)				Time sputum	cted? collec	ted (24hr):	s L		

IBEEP CRF V1 VERSION 10 OF 10

PAGE 14 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW CASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

BIA

Has participant exercised / or showered in the pa	st 2 hours?	If yes, postpone
for at least 2 hours		
Has participant eaten in the last 2 hours?	If yes, postpone for at l	east 2 hours
Has participant emptied bladder prior to test?	If no, perform now	
Has participant wiped hands and feet with wipes?	If no, perform i	now

Does participant have a pacemaker or other implanted electrical devices (such as a defibrillator or nerve stimulator)? ______ Do not perform test.

Does participant have any metal implants (eg pins/plates, knee replacement)? This is only a contraindication when the metal is in the hands/feet (when close to the electrodes). However may potentially affect results.

Is the participant breastfeeding or currently pregnant?

BIA is contraindicated during the first 12 weeks of pregnancy. Do not perform test on pregnant women regardless of gestation. Breastfeeding may affect the fluid levels and caution should be taken interpreting results.

Has the participant had any radiographic contrast material (Barium) injected in the last 72 hours? Do not perform the test as results would not be valid. Postpone test.

Do not perform if the participant has an amputation.

Remind participant to remove all jewellery, extra clothing, stockings and empty pockets.

Dexa pre-test questionnaire

PRIOR TO SCAN

Waist Circumference (cm):

The participant should empty their bladder, remove all jewellery, hairpins, glasses, underwire bras and put on a gown

Previous Bone Density or		Yes		No		
Body Composition Scan:						
When:			Result:			
Previous Medical History:						
Fractures:		Yes		No		
Details/Cause:						
Previous lum	ber spine x-	Yes		No		
ray?						
Date:		Result:				
Kidney	Yes	No	Liver Disease:	Yes	No	
disease:						
Overactive	Yes	No	Arthritis	Yes	No	
Thyroid						
Parathyroid	Yes	No	Malabsorptio	Yes	No	
disease			n (Coeliac			
			Disease)			
Other Medica	Other Medical Illness or		Yes		No	
Major operation?						

IBEEP CRF V1 VERSION 10 OF 10

PAGE 15 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

Have you had an X-ray or CT	Yes		No			
scan with contrast material						
such as barium in the last 7						
days?						
(If 'Yes' delay DEXA scan for at le	east 72hrs, see D	EXA SOP Append	lix 2 for minimum delay times)			
Have you had any nuclear	Yes		No			
medicine scans in the past 3						
days?						
(If 'Yes' delay DEXA scan for at le	east 48hrs, see D	EXA SOP Append	lix 2 for minimum delay times)			
Have you ever fractured	Yes – Both / Ri	ght / Left	No			
your hip, had a hip						
replacement, or do you have						
a pin in your hip?						
(If bilateral hip replacement, pins or screws present do not perform femur measurement, if unilateral hip						
metal surgical implant present scar	metal surgical implant present scan other hip)					
Do you have any lumbar	Yes		No			
spine implants, pins or have						
you had spinal fusion?	n?					
(If metallic rods or spinal fusion devices present in lumbar spine, do not perform lumbar spine scan)						
Do you have any other	Yes		No			
surgical implants, surgical						
pins, a pacemaker or						
defibrillator?						
If 'Yes' List:						
(DEXA is safe for permanent pacem	akers or implantal	ble defibrillators)				
Have you been on oral	Yes		No			
steroid treatment?						
What treatment:	Dose:		Duration:			
Are you on treatment for	Yes		No			
Osteoporosis?						
What treatment:		Year comment	ed:			
Do you take Calcium	Yes		No			
Supplements?						
(If yes, have they taken any in the l	(If yes, have they taken any in the last 24hrs, if yes delay scan for 24hrs)					
Menopausal?	Yes		No			
Age of menopause:		LMP:				
Are you or could you be	Yes		No			
pregnant?						
(If 'Yes', do not scan, subject not el	igible)					
Comments						

DEXA - TOTAL BODY SCAN

BMI (kg/m²):	
Classification:	
Total Tissue % Fat:	

Trunk Tissue % Fat:

IBEEP CRF V1 VERSION 10 OF 10

PAGE 16 OF 47

INVESTIGATING BRONCHIECTASIS – E THE UNIVERSITY OF NEWCASTLE	INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
IDINITIALS		DATE//	VISIT			
Android Tissue % Fat:						
Gynoid Tissue % Fat:						
Total Tissue (g):						
Total Fat (g):						
Total Lean (g):						
Total BMC (g):						
Fat Free (g):						
Fat Free Mass Index	:					
total body lean soft tiss	sue + bone mineral	content in Kg =				
Не	eight (m) ²					
Appendicular Skeletal Muscle Mass Index :						
lean soft tissue both a	rms+ lean soft tissu	ie both legs in K	3=			
He	eight (m) ²					
Sarcopenia (N	len: ≤7.26Kg/m²)	Yes	No			
(V	/omen: ≤5.45Kg/m²)				
	Blood & Sp	outum Biom	arkers			
Blood collected for: FBC	, CRP, RNA, IgE, se	rum, plasma. (initi	al)Time of collection:			
Tube required:						
1 x 4mL EDTA blood (pu	rple top)					
1 x 9ml EDTA (purple top)					
1 x 4ml Lithium heparin (1 x 4ml Lithium heparin (green)					
2 x 6ml serum (red) – 1x	6ml Serum to go to H	HAPS for IgE (No	IgE for healthy controls)			
	1	POC-CRP				
HS-CRP:	Measurement:		Initial:			
Haemoglobin:	Measurement:		Initial:			
IBEEP CRF V1 VERSION 10 C	0F 10		PAGE 17 OF 47			

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE						
ID		DATE//		VISIT		
	PHYSICAL ACTIVITY					
Activity mo	nitors x 2 given:	Yes / No				
Care instru	ictions & Wear log given	Yes / No				
Activity mo	nitor number:					
Activpal number:						
HRCT Scan Chest (Not applicable for healthy controls)						
Has the su	bject had a HRCT scan of	the Chest in the past	12month	s?		
	Yes Date performed	:N	No⊡ (P	lease arrange)		
Date and ti Booked by						
DOOKED by						
		Adherence				
	Medication	use over the last thr	ree mon	ths		
Please circle	e the answer:					
In the last th	nree month;					
Have you at Comment –	t times been careless about u ie .Describe how many miss	ising your inhaler? ed doses in the last wee	ek	Y/N		
Have you ev Comment	Have you ever forgotten to use your inhaler? Y/N Comment					
Have you ever stopped using your inhaler because you felt better? Y/N Comment						
Have you ever stopped using your inhaler because you felt worse? Y/N Comment						
Have you ev Comment	Have you ever used your inhaler less than the doctor prescribed because you felt better? \mathbf{Y}/\mathbf{N} Comment					
Have you ev	ver used your inhaler more th	an the doctor prescribed	d because	e you felt you were having ar		
Comment				Y/N		

IBEEP CRF V1 VERSION 10 OF 10 PAGE 18 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	visir		

International Physical Activity Questionnaire

We are interested in finding out about the kinds of physical activities that people do as part of their everyday lives. The questions will ask you about the time you spent being physically active in the last 7 days. Please answer each question even if you do not consider yourself to be an active person. Please think about the activities you do at work, as part of your house and yard work, to get from place to place, and in your spare time for recreation, exercise or sport.

Think about all the vigorous activities that you did in the last 7 days. Vigorous physical activities refer to activities that take hard physical effort and make you breathe much harder than normal. Think only about those physical activities that you did for at least 10 minutes at a time.

During the last 7 days, on how many days did you do vigorous physical activities like 1. heavy lifting, digging, aerobics, or fast bicycling?

days per week

No vigorous physical activities - Skip to question 3

How much time did you usually spend doing vigorous physical activities on one of 2 those days?

hours per day minutes per day

Don't know/Not sure

Think about all the moderate activities that you did in the last 7 days. Moderate activities refer to activities that take moderate physical effort and make you breathe somewhat harder than normal. Think only about those physical activities that you did for at least 10 minutes at a time.

During the last 7 days, on how many days did you do moderate physical activities like 3. carrying light loads, bicycling at a regular pace, or doubles tennis? Do not include walking.

days per week

IBEEP CRF V1 VERSION 10 OF 10

PAGE 19 OF 47

INVESTIGATING BRONCHIECTASIS – EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND AREA	A HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT		

4. How much time did you usually spend doing **moderate** physical activities on one of those days?

____ hours per day
_____ minutes per day

Don't know/Not sure

Think about the time you spent **walking** in the **last 7 days**. This includes at work and at home, walking to travel from place to place, and any other walking that you might do solely for recreation, sport, exercise, or leisure.

5. During the **last 7 days**, on how many days did you **walk** for at least 10 minutes at a time?

Skip to question 7

days per week			
		No walking	

6. How much time did you usually spend walking on one of those days?

hours per day
minutes per day

Don't know/Not sure

The last question is about the time you spent **sitting** on weekdays during the **last 7 days**. Include time spent at work, at home, while doing course work and during leisure time. This may include time spent sitting at a desk, visiting friends, reading, or sitting or lying down to watch television.

7. During the last 7 days, how much time did you spend sitting on a week day?

hours per day minutes per day

Don't know/Not sure

IBEEP CRF V1 VERSION 10 OF 10

PAGE 20 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT		

DYSPNOEA

Modified Medical Research Council Dyspnoea Scale

"We would like to assess your level of breathlessness"

Grade/Circle

- 0 "I only get breathless with strenuous exercise"
- 1 "I get short of breath when hurrying on the level or walking up a slight hill"
- 2 "I walk slower than people of the same age on the level because of breathlessness or have to stop for breath when walking at my own pace on the level"
- 3 "I stop for breath after walking about 100 yards or after a few minutes on the level"
- 4 "I am too breathless to leave the house" or "I am breathless when dressing"

Note to researcher: This is the modified MRC scale that uses the same descriptors as the original MRC scale in which the descriptors are numbered 1-5. The modified MRC scale (0-4) is used for calculation of BODE index.

Laryngeal Dysfunction Questionnaire

1.	Where	do you	feel	the tightness?	
----	-------	--------	------	----------------	--

Neck
jugular notch
upper chest lower chest □ N/A 🗆

2. Is it harder to breathe in than out?

Y/N (if answers to Q1 and Q2 are N/A and No then move onto Q7).

3. How quickly do your symptoms come on? (ie, tightness, breathing difficulty) Seconds < 3 minutes > 3 minutes

4. When the attack stops, (including after treatment), how guickly do your symptoms go away?

Seconds			
< 5 minutes			
> 5 minutes			

IBEEP CRF V1 VERSION 10 OF 10

PAGE 21 OF 47

Appendix X: Case Record File for Bronchiectasis and Healthy Control Participants.

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE			
ID		DATE//	VISIT		

5. What triggers your symptoms? (eg: exercise, heart burn, pnd, pollution, cold air, talking)

6. Do asthma medications give you relief?

Yes (if Y within how many minutes?) minutes N/A	
7. Does your voice get hoarse or do you lose your voice?	Y/N
8. Do you feel a lump in your throat?	Y/N
9. Do you feel like you are choking or suffocating?	Y/N
10. Do you have pins and needles around the lips or the fingertips?	Y/N

Malnutrition Universal Screening Tool

1. Have you/the patient lost weight recently without trying?

No Unsure	0 2
Yes, How much (kg)? 1-5 6-10 11-15	1 2 3
>15	4
Unsure	2

2. Have you /the patient been eating poorly because of a decreased appetite?

No	0	
Yes	1	

Malnutrition Universal Screening Tool - Total Score

IBEEP CRF V1 VERSION 10 OF 10

PAGE 22 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW	VCASTLE HUNTER NEW ENGLAND AREA	A HEALTH SERVICE			
ID	INITIALS	DATE//	VISIT		

Epworth Sleepiness Scale

How likely are you to dose off or fall asleep in the following situations, in contrast to feeling tired? Using the following scale circle a number to score each of the questions with regard to the last week.

0 Never	doze Slight chance of dozing Moderate cha	ance of dozing	High	3 chance	e of doz	ing
How lik	ely are you to doze off or fall asleep (please circle your	answer)				
1.	While sitting and reading?	0) 1	1	2	3
2.	While watching TV?	0) 1	1	2	3
3.	While sitting inactive in a public place (eg theatre, meeti	ng)? 0) 1	1	2	3
4.	While a passenger in a car for an hour without a break?	0) 1	1	2	3
5.	While lying down to rest in the afternoon when circumsta	ances permit?				
		0) 1	1	2	3
6.	While sitting and talking to someone?	0) 1	1	2	3
7.	While sitting quietly after lunch without alcohol?	0) 1	1	2	3
8.	While in a car stopped for a few minutes in traffic?	0) 1	1	2	3

Total Score

IBEEP CRF V1 VERSION 10 OF 10

PAGE 23 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	visir		

Short Assessment of Patient Satisfaction (SAPS) with Instructions

(Not applicable for healthy controls)

Instructions: After reading each question, circle the answer that best describes your situation. We know that sometimes answers may not describe you exactly, so please pick the answer that *most closely describes you*.

When you have finished, please check that you have answered all questions.

Q1. How happy are you with the effect of your treatment?

Very happy	0
Нарру	1
Neither happy nor unhappy	2
Unhappy	3
Very unhappy	4

Q2. How satisfied are you with the explanations the {doctor/other health professional} has given you about the results of your treatment?

Very dissatisfied	0
Dissatisfied	1
Neither satisfied nor dissatisfied	2
Satisfied	3
Very satisfied	4

Q3. The {doctor/other health professional} was very careful to check everything when examining you.

Strongly agree	0
Agree	1
Not sure	
Disagree	3
Strongly disagree	4

Q4. How satisfied were you with the choices you had in decisions affecting your health care?

Very dissatisfied	0
Dissatisfied	1
Neither satisfied nor dissatisfied	2
Satisfied.	
Very satisfied	4

Q5. How much of the time did you feel respected by the {doctor/other health professional}?

0
1
2
3
.4

Q6. The time you had with the {doctor/other health professional} was not long enough.

Strongly agree	0
Agree	1
Not sure	2
Disagree	
Strongly disagree	4

IBEEP CRF V1 VERSION 10 OF 10

PAGE 24 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT		
07. Are you have with the care you received in the (hearits//slinic)0					
V	ery happy	0			
н	арру	1			
N	either happy nor unhappy	2			
U	nhappy	3			

2. Sum all scores. The score range is from 0 (extremely dissatisfied) to 28 (extremely satisfied)

What is/are the biggest problem/s you experience as a result of your breathing problem?

Patient Related Problems

Total

Very unhappy.....4

Scoring the SAPS:

1. Reverse the scores for #1, #3, #5, #7

IBEEP CRF V1 VERSION 10 OF 10

PAGE 25 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEW CASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VISIT	

Common cold questionnaire (complete only if there is a suspected virus)

SUBJECT No:	Date:	INITIAL	s:	
In the past two days have you	experienced any of	the following:		
	NO	NE MILD	MODERATE	SEVERE
A General Symptoms: 1. Fevers 2. Chills 3. Muscle pains				
 B. Nasal Symptoms: 1. Watery eyes 2. Runny nose 3. Sneezing 				
C. Throat Symptoms: 1. Sore throat				
 D. Chest Symptoms: 1. Cough 2. Chest pain 				
E. Photophobia:				

- A <u>probable</u> viral infection is where there are <u>moderate</u> symptoms noted in <u>at least two</u> of the above four categories <u>or mild symptoms</u> noted in <u>three or more</u> categories.
- A possible viral infection is where mild symptoms are noted in one category plus a cough.

Probable Viral:	Yes		No	
Possible Viral:	Yes	\square	No	

Infected Controls must have a probable or possible infection

All other subjects must have none of the symptoms listed with the exception of cough - IF RETURN A POSITIVE RESPONSE PLEASE RE-BOOK FOR FOUR WEEKS TIME

IBEEP CRF V1 VERSION 10 OF 10

PAGE 26 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	VISIT	

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP) VISIT 1 PART B

VISIT 1B CHECKLIST	Sign Initials
Date of Visit 1 Part B//	
ECG	
FENO	
Spirometry (Pre and Post)	
Potential Sputum Induction	
Exercise Tolerance (6MWT)	
Trunk strength Tests (core/upper body/lower body)	
Physical Activity Monitors Returned	
SGRQ (bronchiectasis participants only)	
COPD Assessment Test (CAT)	
SF36	
Anxiety and Depression assessments	
Dysfunctional breathing (Nijmegen)	
Past-day Adults' Sedentary Time (PAST) Questionnaire	
3IQ	
QOL B	
Monitored	

IBEEP CRF V1 VERSION 10 OF 10

PAGE 27 OF 47
INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)						
THE UNIVERSIT OF INEV	CASILE HUNIER NEW ENGLAND ARE	A REALIH SERVICE				
ID	INITIALS	DATE/_/	VISIT			
		200				
		ECG				
ECG completed	ECG completed (initial)					

FeNO

Sample 1	ppb	Ambient eNO	
Sample 2	ppb	Last oral intake	hours
Sample 3	ppb	Last bronchodilator	hours
Average	ppb		

IBEEP CRF V1 VERSION 10 OF 10

PAGE 28 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)						
THE UNIVERSITY OF NEW	THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT			

(Partic	SPIROMETRY (Participant required to withhold medications according to Section 5.2.1 Table 2 of Protocol)								
Spiromete	er Make:					Assessor:			
Asthma M	edications	Withheld?	Medication Nan	ne:					
Yes 🗆		No 🗆	Date & Time last taken:						
			FEV ₁	(L):					
	P	redicted:	FVC	(L):					
	PRE-BRONCHODILATOR EFFORTS								
	1	2	3	4	5		6	7	8
FEV ₁ (L)									
FVC (L)									
Comment									
	-		BEST	Commen	ts				·
		FEV ₁ (L)							
BEST Pre	-B2	FVC (L)							
Bronchod	lilator Adı	ninistration	:						
400µg (4 p	ouffs) Salb	utamol given	via spacer?	□Yes	□No	Con	ment:		
Time B ₂ G	iven (24hr):	_ Time Pa	used (15mi	ns):		(mins)		
			POST-BRONG	HODILAT	OR EFFO	RTS			
	1	2	3	4	5		6	7	8
FEV ₁ (L)									
FVC (L)									
Comment									
			BEST	Commen	ts				
DESTR	+ D	FEV ₁ (L)							
BEST Post-B ₂		FVC (L)							

IBEEP CRF V1 VERSION 10 OF 10

PAGE 29 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)						
THE UNIVERSITY OF NEW	THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT			

SPUTUM INDUCTION (COMPLETE if NO Sputum was obtained at Visit A <u>OR</u> if either cell counts or micro data was not obtained from the visit A sample) Please refer to sputum induction flowchart for safety guidelines (Protocol Appendix C)									
Mouth rinsed (x3) with	water? [□ <u>Yes</u>	□ No	Nebuliser Ma	ake/Name:				
Asthma medications withheld Yes No		Saline Used:	Saline Used: 4.5% saline 0.9% salin				% saline		
Is the best Post B2 FEV ₁ (L) ≥ 40% predicted? <u>Yes</u> (continue) No (STOP discuss with supervisor, ? 0.9% sal.)		修 15% f = 8	 ♡ Calculate Safety Stop: 15% fall from baseline FEV₁ (L) = 85% x baseline FEV₁ (L) 						
Nebuliser Cup Weight (with saline + tubing)									
* Spontaneous Sputu	P Im Samr	re Weight ((g) cted?[Post	Weight (g)	rt new ·	Del	ivered dose	*(g)
Saline nebulised time (adjust intervals if required up to a <u>total of 15.5mins</u>)	FE 1	V ₁ (L) eff	iorts	% fall from baseline FEV1	Saline Induced Sputum (SIS) produced (Y/N)	eed B ₂ required? Record FEV		Recovery FEV ₁ , L (post B ₂)	
Baseline Best FEV ₁ (L) (post B2)		opuonar	opuonar			T/IN	(84)	(mins)	
30 sec									
1 min									
2 min									
4 min									
4 min									
4 min									
			L		Courtum Come		lostod2		
Cumulative Induction T (total time on nebuliser)	ime (mii	ns)":			Time sputum (collect	ted (24h	nr):	
Comments/Notes:									
* Attempt a full 15.5 min	ute indu	ction reg	gardless	of total time on	nebuliser at vis	it 1.			
IBEEP CRF V1 VERSION 10	IBEEP CRF V1 VERSION 10 OF 10 PAGE 30 OF 47								

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT		

Exercise Tolerance

Predicted HRmax (220-age):____

Bronchodilator pre treatment Salbutamol given? Yes/No Time given: _

- NOTE:1. Healthy controls do not receive bronchodilator pre treatment

 - 2. If 6MWT done < 20 minutes after Pre/Post spirometry this can count as pre treatment 3. If 6MWT done after Pre/Post Spirometry but > 20 minutes after, pre treat with 200mcg
 - 4. If 6MWT done before Pre/Post spirometry pre treat with 400mcg

Date

Time

Bronchodilator time since last dose

BP	RR	Supplemental Oxygen?	Gait Aid?
Manual HR			

Time (min)	SpO ₂	HR	Dyspnoea (BORG)	Rests
Rest				
1				
2				
3				
4				
5				
6				
Recovery 1				Total rests
2				

Post RR (at 6 minutes)_

Limiting factor to the test: Low SpO₂ □ Leg fatigue □ Other:

40	200	360	520
80	240	400	560
120	280	440	600
160	320	480	+/-
TOTAL WALK DISTANC	E		METRES

IBEEP CRF V1 VERSION 10 OF 10

PAGE 31 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	visir		

Core Strength Tests:

Past Injury / Surgical History:

A) Static ¼ sit-up: Patient in crook lying with arms by side. Adhere tape at finger tips and 12 cm from the first strip (8cm if the pt. over 40 yrs old). Instruct patient to raise head & shoulders by sliding palms forward to second strip and hold.

Time held:.....Classification (percentile range):....

B) Sorenson test: Patient prone with trunk off the edge of the plinth and arms resting on the chair. Patient instructed to lift trunk until level with the plinth and hold. If horizontality broken, once = correct, twice = stop test.

Time Held:.....Classification:....

C) Side bridge endurance test: Patient in side bridge position (top foot in front of lower foot on plinth) and instructed to raise hips off plinth and hold.

Time Held:.....Classification Left:....Classification right:....

Termination criteria and Contraindications for trunk endurance tests

- Subject no longer able to sustain position
 - Subject unable to assume position on practice trial
 - Subject terminates the test
 - Subject reports pain- staff are to terminate the test immediately and document the time held until pain commenced.
 - Subject refuses to attempt test
 - Signs of poor perfusion
 - Heart rate exceeds pre defined HR maximum (220-age)
 - Onset of angina or angina symptoms
 - SpO2<88% at rest
 - Test will not be performed if there are any contraindications to exercise. This will be screened prior to walk test. Contraindications include HR>125 bpm at rest, SpO2<88% prior to test, physical disability preventing safe performance, acute/unstable angina, RR excessive or BORG >4 at rest.

IBEEP CRF V1 VERSION 10 OF 10

PAGE 32 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE						
ID			DATE/		VISIT	
Upper & Lower Body Strength Tests:						
Dynamometry	(Shoulder)	Push	Dynamo	ometry (Leg)	Attempt 1	
		Pull			Attempt 2	
Activity monitor and heart rate monitor returned (should be worn for 6MWT) Wear log returned						

HR QOL - SGRQ (Not applicable for healthy controls)

Remind patient to answer the questions relating the answers to the last month, not the last year.

Symptoms	
Activity	
Impacts	
Total	

IBEEP CRF V1 VERSION 10 OF 10

PAGE 33 OF 47

INVESTIGATING BRONCHECTASIS – EVALUATING PHENOTYPES (IBEEP) THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	Visit		

How is your COPD? Take the COPD Assessment Test[™] (CAT)

This questionnaire will help you and your healthcare professional measure the impact COPD (Chronic Obstructive Pulmonary Disease) is having on your wellbeing and daily life.Your answers, and test score, can be used by you and your healthcare professional to help improve the management of your COPD and get the greatest benefit from treatment.

For each item below, place a mark (X) in the box that best describes you currently. Be sure to only select one response for each question.

umple: I am very happy	002345	I am very sad
never cough	012345	I cough all the time
have no phlegm (mucus) n my chest at all	012345	My chest is completely full of phlegm (mucus)
My chest does not eel tight at all	012345	My chest feels very tight
When I walk up a hill or one flight of stairs I am not breathless	012345	When I walk up a hill or one flight of stairs I am very breathless
am not limited doing any activities at home	012345	I am very limited doing activities at home
am confident leaving ny home despite my ung condition	002345	I am not at all confident leaving my home because of my lung condition
sleep soundly	012345	I don't sleep soundly because of my lung condition
have lots of energy	012345	l have no energy at all

IBEEP CRF V1 VERSION 10 OF 10

PAGE 34 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID INITIALS DATE/ VISIT					

QUALITY OF LIFE - SF36 Health Survey

Patier keep mark answ	Patient to complete: This set of questions asks for your views about your health. This information will help keep track of how you feel and how well you are able to do your usual activities. Answer every question by marking the answer as indicated. If you are unsure about how to answer a question please give the best answer you can.					
1.	In general, would you say your health is: (Please tick one box.) Excellent (1) Very Good (2) Good (3) Fair (4) Poor (5)					
2.	Compared to one year ago, how would you rate your health in general gen	now? (Plea	se tick one b	ox).		
3.	The following questions are about activities you might do during a typi	cal day. Do	es your heal	th now		
	limit you in these activities? If so, how much? (Please circle one no Activities	umber on e Yes, Limited A Lot	each line.) Yes, Limited A Little	Not Limited At All		
3(a)	Vigorous activities, such as running, lifting heavy objects,	1	2	3		
3(b)	participating in strenuous sports Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling or playing golf	1	2	3		
3(c)	Lifting or carrying groceries	1	2	3		
3(d)	Climbing several flights of stairs	1	2	3		
3(e)	Climbing one flight of stairs	1	2	3		
3(f)	Bending, kneeling, or stooping	1	2	3		
3(g)	Walking more than a mile	1	2	3		
3(h)	Walking several blocks	1	2	3		
3(i)	Bathing on dressing yourself	1	2	3		
4.	During the past 4 weeks, have you had any of the following problems a daily activities as a result of your physical health?	with your w	ork or other n	egular		
	(Please circle one number on each line.)		Yes	No		
4(a)	Cut down on the amount of time you spent on work or other activities	i i	1	2		
4(b)	Accomplished less than you would like		1	2		
4(c)	Were limited in the kind of work or other activities		1	2		
4(d)	Had difficulty performing the work or other activities (for example, it took extra 1 2 effort)					
5.	During the past 4 weeks, have you had any of the following problems daily activities as a result of any emotional problems (e.g. feeling depresent)	with your w	ork or other n xious)?	egular		
	(Please circle one number on each line.)		Yes	No		
5(a)	Cut down on the amount of time you spent on work or other activities	i	1	2		
5(b)	Accomplished less than you would like		1	2		
5(c)	Didn't do work or other activities as carefully as usual		1	2		
	0051///	D				

IBEEP CRF V1 VERSION 10 OF 10

PAGE 35 OF 47

Appendix X: Case Record File for Bronchiectasis and Healthy Control Participants.

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT		

6.	During the <u>past 4 weeks</u> , to what extent ha with your normal social activities with fami Not at all (1) Slightly (2) Moderately (3) Quite a bit (4) Extremely (5)	as your ph ly, friends	nysical he , neighbo	alth or emo urs, or grou	otional proi ups? (Plea	blems inter se tick one	fered e box.)
7.	How much <u>physical</u> pain have you had during the <u>past 4 weeks</u> ? (Please tick one box.) None (1) Very mild (2) Mild (3) Moderate (4) Severe (5) Very Severe (6)						
8.	During the <u>past 4 weeks</u> , how much did <u>pain</u> interfere with your normal work (including both work outside the home and housework)? (Please tick one box.) Not at all (1) A little bit (2) Moderately (3) Quite a bit (4) Extremely (5)						
9.	These questions are about how you feel a	nd how th	ings have	e been with	you <u>durin</u>	q the past	4 weeks.
	Please give one answer that is closest to t	the way yo	bu have b Most	een feeling	for each i	item,	None
	(Please circle one number on each line)	the	of the Time	Bit of the	e of the Time	of the Time	of the
9(a)	Did you feel full of life?	1	2	3	4	5	6
9(b)	Have you been a very nervous person?	1	2	3	4	5	6
9(c)	Have you felt so down in the dumps that nothing could cheer you up?	1	2	3	4	5	6
9(d)	Have you felt calm and peaceful?	1	2	3	4	5	6
9(e)	Did you have a lot of energy?	1	2	3	4	5	6
9(f)	Have you felt downhearted and blue?	1	2	3	4	5	6
9(g)	Did you feel worn out?	1	2	3	4	5	6
9(n)	Have you been a happy person?	1	2	3	4	5	6
9(1)	Dia you teel tirea?	1	2	3	4	5	6
10.	10. During the <u>past 4 weeks</u> , how much of the time has your <u>physical health or emotional problems</u> interfered with your social activities (like visiting with friends, relatives etc.) (Please tick one box.) All of the time (1) Most of the time (2) Some of the time (3) A little of the time (4) None of the time (5)						
	Most of the time (2) Some of the time (3) A little of the time (4) None of the time (5)						
11.	Most of the time (2) Some of the time (3) A little of the time (4) None of the time (5) How TRUE or FALSE is <u>each</u> of the follow (Please circle one number on each line)	ring stater .) Def 1	nents for initely rue	you? Mostly True	Don't M Know I	Nostly D)efinitely False
11. 11(a)	Most of the time (2) Some of the time (3) A little of the time (4) None of the time (5) How TRUE or FALSE is <u>each</u> of the follow (Please circle one number on each line.	ving stater .) Det . 1	nents for initely rue 1	you? Mostly True 2	Don't M Know I 3	Nostly D False	Definitely False 5
11. 11(a) 11(b)	Most of the time (2) Some of the time (3) A little of the time (4) None of the time (5) How TRUE or FALSE is <u>each</u> of the follow (Please circle one number on each line. I seem to get sick a little easier than other <u>people</u> I am as healthy as anybody I know	ring stater .) Det _ 1	ments for initely 1	you? Mostly True 2	Don't M Know I 3	Mostly D False 4	Definitely False 5
11. 11(a) 11(b) 11(c)	Most of the time (2) Some of the time (3) A little of the time (3) None of the time (4) None of the time (5) How TRUE or FALSE is <u>each</u> of the follow (Please circle one number on each line. I seem to get sick a little easier than other <u>people</u> I am as healthy as anybody I know I expect my health to get worse	ring stater .) Det . 1	nents for initely rue 1 1	you? Mostly True 2 2 2	Don't M Know I 3 3 3	Mostly D False 4 4	Definitely False 5 5 5

IBEEP CRF V1 VERSION 10 OF 10

Thank You!

PAGE 36 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID	INITIALS	DATE//	VISIT		

Hospital Anxiety and Depression Scale

Most of the time3Nearly all the time3A lot of the time2Very often2A lot of the time, occasionally1Sometimes1Not at all0Not at all0I still enjoy the things I used to enjoy:DI get a sort of frightened feeling like 'butterflies in the stomach':ADefinitely as much0Not at all0Not quite so much1Occasionally1Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly2I don't take as much care as I should2ANot at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AA smuch as I always could0Very much indeed3Not at all3Not every much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:A great deal of the time2Rather less than I used to1From time to time but not oo often1Definitely less than I used to1From time to time but not oo often1Definitely less than I used to1From time to time but not oo often1Definitely less than I used to<	I feel tense or 'wound up:	Α	I feel as if I am slowed down:	D
A lot of the time 2 Very often 2 Time to time, occasionally 1 Sometimes 1 Not at all 0 Not at all 0 I still enjoy the things I used to enjoy: D I get a sort of frightened feeling like 'butterflies in the stomach': A Definitely as much 0 Not at all 0 Not at all 0 Only a little 2 Quite often 2 2 Not at all 0 I get a sort of frightened feeling as if something awful is about to happen: A I have lost interest in my appearance: D Very definitely and quite badly 3 Definitely 3 Definitely 3 Yees, but no too badly 2 1 don't take as much care as I should 2 A little, but it doesn't worry me 1 I may not take quite as much care 1 Not at all 0 I take just as much care as I should 2 A lot of the time 3 Not quite as much now 1 Quite a lot Definitely not so much now 1 A uot the all 0 Not at all 3 Not at all 1 I con forward with enjoyment to things: <td>Most of the time</td> <td>3</td> <td>Nearly all the time</td> <td>3</td>	Most of the time	3	Nearly all the time	3
Time to time, occasionally1Sometimes1Not at all0Not at all0I still enjoy the things I used to enjoy:DI get a sort of frightened feeling like butterflies in the stomach':ADefinitely as much0Not at all0Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely33Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all01 feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not at all3Not ery much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to3I feel cheerful:D1 get sudden feelings of panic:AA rat all3Very often33I feel cheerful:D1 get sudden feelings of panic:AI feel cheerful:D1 get sudden feelings of panic:AI f	A lot of the time	2	Very often	2
Not at all0Not at all0I still enjoy the things I used to enjoy: Definitely as muchDI get a sort of frightened feeling like butterflies in the stomach':ADefinitely as much0Not at all0Not quite so much1Occasionally1Only a little2Quite offen2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly2I don't take as much care as I should2Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not at all0Very much indeed3Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:A great deal of the time3As much as I ever did0A lot of the time2Quite all31Fel cheerful:DI get sudden feelings of panic:ANot at all3Very often33I feel cheerful:DI get sudden feelings of panic:	Time to time, occasionally	1	Sometimes	1
I still enjoy the things I used to enjoy:DI get a sort of frightened feeling like 'butterflies in the stomach':ADefinitely as much0Not at all0Not quite so much1Occasionally1Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely32Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things: Not quite as much nowDI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not at all0Worrying thoughts go through my mind: A lot of the timeAI look forward with enjoyment to things:DA great deal of the time3Very often3I feel Cheerful:DI get sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI get	Not at all	0	Not at all	0
Definitely as much0Not at all0Not quite so much1Occasionally1Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely3Definitely3Yes, but not too badly2I don't take as much care as I should2AA little, but it doesn't worry me1I may not take quite as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time2As much as I ever did01A lot of the time2Rather less than I used to1From time to time but not too often1Definitely at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI get sudden feelings of panic:A <t< td=""><td>I still enjoy the things I used to enjoy:</td><td>D</td><td>I get a sort of frightened feeling like 'butterflies in the stomach':</td><td>Α</td></t<>	I still enjoy the things I used to enjoy:	D	I get a sort of frightened feeling like 'butterflies in the stomach':	Α
Not quite so much1Occasionally1Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely3Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:A great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0I age sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI get sudden feelings of panic:ANot often2Quite often2Sometimes1Not very often1Most of the time0Not at all0 <td< td=""><td>Definitely as much</td><td>0</td><td>Not at all</td><td>0</td></td<>	Definitely as much	0	Not at all	0
Only a little2Quite often2Not at all3Very often3I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely32Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not ery much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:A great deal of the time2As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3I feel cheerful:DI can enjoy a good book or radio or TVDDefinitely0Often0Often0Usually1	Not quite so much	1	Occasionally	1
Not at all 3 Very often 3 I get a sort of frightened feeling as if something awful is about to happen: A I have lost interest in my appearance: D Very definitely and quite badly 3 Definitely 3 Definitely 3 Yes, but not too badly 2 I don't take as much care as I should 2 A A little, but it doesn't worry me 1 I may not take quite as much care 1 Not at all 0 I take just as much care as ever 0 I can laugh and see the funny side of things: D I feel restless as if I have to be on the move: A As much as I always could 0 Very much indeed 3 Not quite as much now 1 Quite a lot 2 Definitely not so much now 1 Quite a lot 2 Not very much 1 Not at all 3 Not at all 0 Very much mideed 0 A great deal of the time 3 As much as I ever did 0 1 From time to time but not too often 1 Definitely less than I used to 1 From time to time but not too often 1 Definitely less	Only a little	2	Quite often	2
I get a sort of frightened feeling as if something awful is about to happen:AI have lost interest in my appearance:DVery definitely and quite badly3Definitely3Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did01From time to time but not too often1Definitely less than I used to1I feel cheerful:DI get sudden feelings of panic:ANot often2Quite often33Not often2Quite often34I feel cheerful:DI get sudden feelings of panic:ANot often2Quite often34I feel cheerful:DI get sudden feelings of panic:ANot often2Quite often33Not often1Not very often10 <t< td=""><td>Not at all</td><td>3</td><td>Very often</td><td>3</td></t<>	Not at all	3	Very often	3
Very definitely and quite badly3Definitely3Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time1Definitely less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1I feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often0Usually1Sometimes1Not often2Not erg1Not often2Not often2Not often3 </td <td>I get a sort of frightened feeling as if something awful is about to happen:</td> <td>Α</td> <td>I have lost interest in my appearance:</td> <td>D</td>	I get a sort of frightened feeling as if something awful is about to happen:	Α	I have lost interest in my appearance:	D
Yes, but not too badly2I don't take as much care as I should2A little, but it doesn't worry me1I may not take quite as much care1Not at all0I take just as much care as ever0I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:A great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often00Usually1Sometimes1Not often2Not often2Not often3Very seldom3	Very definitely and guite badly	3	Definitely	3
A little, but it doesn't worry me 1 I may not take quite as much care 1 Not at all 0 I take just as much care as ever 0 I can laugh and see the funny side of things: D I feel restless as if I have to be on the move: A As much as I always could 0 Very much indeed 3 Not quite as much now 1 Quite a lot 2 Definitely not so much now 2 Not very much 1 Not at all 3 Not at all 0 Worrying thoughts go through my mind: A I look forward with enjoyment to things: D A great deal of the time 3 As much as I ever did 0 1 From time to time but not too often 1 Definitely less than I used to 1 I feel cheerful: D I get sudden feelings of panic: A Not at all 3 Very often 3 3 Not often 2 Quite often 2 2 Only occasionally 0 Hardly at all 3 3 I feel cheerful: D I get sudden feelings of panic: A	Yes, but not too badly	2	I don't take as much care as I should	2
Not at all 0 I take just as much care as ever 0 I can laugh and see the funny side of things: D I feel restless as if I have to be on the move: A As much as I always could 0 Very much indeed 3 Not quite as much now 1 Quite a lot 2 Definitely not so much now 2 Not very much 1 Not at all 3 Not at all 0 Worrying thoughts go through my mind: A I look forward with enjoyment to things: D A great deal of the time 3 As much as I ever did 0 0 A loot of the time 2 Rather less than I used to 1 1 From time to time but not too often 1 Definitely less than I used to 2 2 Only occasionally 0 Hardly at all 3 3 1 3 1 Not at all 3 Very often 2 2 3 3 1 I feel cheerful: D I get sudden feelings of panic: A 4 1 3 1 1 Not often 2 Qu	A little, but it doesn't worry me	1	I may not take quite as much care	1
I can laugh and see the funny side of things:DI feel restless as if I have to be on the move:AAs much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TV programme:DDefinitely0Often0Not often1Not often2Not often2Not often2Not often2Not often31Not often3Not often2Not often333Not often2Not often333Not often2Not often33Not often2Not oft	Not at all	0	I take just as much care as ever	0
As much as I always could0Very much indeed3Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often00Usually1Sometimes1Not often2Not often2Not often2Not often2Not often2Not often2Not often3Very seldom3Very seldom3	I can laugh and see the funny side of things:	D	I feel restless as if I have to be on the move:	Α
Not quite as much now1Quite a lot2Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often00Usually1Sometimes1Not often2Not often2Not often2Not often2Not often2Not often001Not often2Not often2Not often0Usually1Sometimes1Not often2Not often2Not often2Not often3	As much as I always could	0	Very much indeed	3
Definitely not so much now2Not very much1Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often2Not often1Usually1Sometimes1Not often2Not often2Not often2Not often2Definitely0Often01Not often2Not often13Not often2Not often21Not often2Not often21Not often2Not often21Not often2Not often21Not often3Very seldom3	Not quite as much now	1	Quite a lot	2
Not at all3Not at all0Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely1Sometimes1Not often2Not often2Definitely1Sometimes1Not often2Not often2Not often2Not often2Definitely1Sometimes1Not often2Not often2Not often2Not often2Not often2Not often2Not often2Not often2Not often3Very seldom3	Definitely not so much now	2	Not very much	1
Worrying thoughts go through my mind:AI look forward with enjoyment to things:DA great deal of the time3As much as I ever did0A lot of the time2Rather less than I used to1From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TVDDefinitely0Often00Usually1Sometimes1Not often2Not often2Not often2Not often3Definitely0Often00Usually1Sometimes1Not often2Not often2Not often2Not often3Not often3Very seldom33	Not at all	3	Not at all	0
A great deal of the time 3 As much as I ever did 0 A lot of the time 2 Rather less than I used to 1 From time to time but not too often 1 Definitely less than I used to 2 Only occasionally 0 Hardly at all 3 I feel cheerful: D I get sudden feelings of panic: A Not at all 3 Very often 3 Not often 2 Quite often 2 Sometimes 1 Not very often 1 Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not often 2 0 0	Worrying thoughts go through my mind:	Α	I look forward with enjoyment to things:	D
A lot of the time 2 Rather less than I used to 1 From time to time but not too often 1 Definitely less than I used to 2 Only occasionally 0 Hardly at all 3 I feel cheerful: D I get sudden feelings of panic: A Not at all 3 Very often 3 Not often 2 Quite often 2 Sometimes 1 Not very often 1 Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 1 Not often 1 Not often 2 Not often 3 1 Definitely 0 Often 0 0 Usually 1 Sometimes 1 1 Not often 2 Not often 2 1 Not often 3 Very seldom 3	A great deal of the time	3	As much as I ever did	0
From time to time but not too often1Definitely less than I used to2Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TV programme:DDefinitely0Often1Not often2Not often1Not often2Very seldom3	A lot of the time	2	Rather less than I used to	1
Only occasionally0Hardly at all3I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TV programme:DDefinitely0Often0Usually1Sometimes1Not often2Not often2Not often3Very seldom3	From time to time but not too often	1	Definitely less than I used to	2
I feel cheerful:DI get sudden feelings of panic:ANot at all3Very often3Not often2Quite often2Sometimes1Not very often1Most of the time0Not at all0I can sit at ease and feel relaxed:AI can enjoy a good book or radio or TV programme:DDefinitely0Often0Usually1Sometimes1Not often2Not often2Not at all3Very seldom3	Only occasionally	0	Hardly at all	3
Not at all 3 Very often 3 Not often 2 Quite often 2 Sometimes 1 Not very often 1 Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	I feel cheerful:	D	I get sudden feelings of panic:	Α
Not often 2 Quite often 2 Sometimes 1 Not very often 1 Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	Not at all	3	Very often	3
Sometimes 1 Not very often 1 Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	Not often	2	Quite often	2
Most of the time 0 Not at all 0 I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	Sometimes	1	Not very often	1
I can sit at ease and feel relaxed: A I can enjoy a good book or radio or TV programme: D Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	Most of the time	0	Not at all	0
Definitely 0 Often 0 Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	I can sit at ease and feel relaxed:	Α	I can enjoy a good book or radio or TV programme:	D
Usually 1 Sometimes 1 Not often 2 Not often 2 Not at all 3 Very seldom 3	Definitely	0	Often	0
Not often 2 Not often 2 Not at all 3 Verv seldom 3	Usually	1	Sometimes	1
Not at all 3 Very seldom 3	Not often	2	Not often	2
	Not at all	3	Verv seldom	3

IBEEP CRF V1 VERSION 10 OF 10

A= D= Total =

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					

Dysfunctional Breathing

Nijmegen Questionnaire

PATIENT TO COMPLETE

We would like you to think about your breathing symptoms. Please circle the score that best describes the frequency with which you experience the symptoms listed below:

	Never	Seldom	Sometimes	Often	Very
					Often
Chest pain	0	1	2	3	4
Feeling tense	0	1	2	3	4
Blurred vision	0	1	2	3	4
Dizziness	0	1	2	3	4
Confusion or loss of touch with reality	0	1	2	3	4
Fast or deep breathing	0	1	2	3	4
Shortness of breath	0	1	2	3	4
Tightness across chest	0	1	2	3	4
Bloated sensation in stomach	0	1	2	3	4
Tingling in fingers and hands	0	1	2	3	4
Difficulty in breathing or taking a deep breath	0	1	2	3	4
Stiffness or cramps in fingers and hands	0	1	2	3	4
Tightness around the mouth	0	1	2	3	4
Cold hands or feet	0	1	2	3	4
Palpitations in the chest	0	1	2	3	4
Anxiety	0	1	2	3	4
Total					

IBEEP CRF V1 VERSION 10 OF 10

PAGE 38 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	VISIT		

Past-day Adults' Sedentary Time (PAST) Questionnaire

Next I will ask you about particular activities you did <u>yesterday</u> while <u>sitting down or lying</u> <u>down</u>. Please note that this does not include sleeping, either in bed or if you fell asleep while doing another activity, for example watching television.

Interviewer: Record yesterday's date

Yesterday's date:

We are going to ask you about different times when you may be sitting or lying down: when working, travelling, watching TV, using the computer, and when doing other activities. For each of these, only count the time when this was your main activity. For example, if you watched TV and ate dinner at the same time, this might be TV or meal time, but not both. Your answers can be given in hours and minutes. Try to report only the time you spent sitting or lying down and not time you spent getting up for breaks (e.g. coffee, bathroom).

ST 1. The next question is about sitting for work. Did you work in a paid position yesterday?

Interviewer: if participant did not work yesterday, skip to ST 4. If they did work yesterday continue to ST 2.

Time spent for work

ST 2. How long in total did you spend at your workplace or working from home yesterday, including meal and snack breaks?

	hours			minutes
--	-------	--	--	---------

Sitting for work

ST 3. How long were you sitting at your workplace or working from home yesterday, including during meal and snack breaks?

		hours
--	--	-------

	minutes
--	---------

IBEEP CRF V1 VERSION 10 OF 10

PAGE 39 OF 47

INVESTIGATING BRONCHIECTASIS – EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE					
ID		DATE//	visit		

Interviewer: if the respondent has difficulty, you can reassure them that their best estimate will be OK.

**Interviewer Check: the time for ST3 cannot be longer than ST2. If ST3 is exactly the same as ST2 (they say they sat for the whole time at work) prompt 'So, can I confirm that you sat for the whole time at work without getting up?'

Sitting for Transport

ST 4. Thinking again of yesterday, please estimate the total time that you spent sitting to travel from one place to another. Please include sitting and waiting for transport. Do not include any time you were standing up while travelling or waiting.

	hours		minutes

Interviewer clarification: transport includes public and private, waiting for any type of transport and travel to all locations. This would not include time spent travelling as part of work which was reported in ST3 e.g. taxi driver

Television Viewing

ST 5. Please estimate the total time you spent sitting or lying down to watch TV or DVDs or play games on the TV, such as play station yesterday? This includes if you watch TV in bed.

Remember, your answer can be given in hours and/or minutes.

hours		minutes

Computer, Internet, Electronic Games

ST 6. Please estimate the total time yesterday that you spent sitting or lying down and using the computer. For example, include time spent playing games, internet activities.

			hours			minutes
Interviewer doing paid about sittin	: <i>if the r</i> work on g for wo	espond I the co Irk.'	ent reporte mputer as	ed wori this sh	king ind Iould h	:lude the prompt 'Do not include time spent ave been included in the previous question

IBEEP CRF V1 VERSION 10 OF 10

PAGE 40 OF 47

INVESTIGATING BRONCHIECTASIS - EVALUATING PHENOTYPES (IBEEP)					
THE UNIVERSITY OF NEW	WCASTLE HUNTER NEW ENGLAND ARE/	A HEALTH SERVICE			
ID	INITIALS	DATE//	visir		

Reading

ST 7. Please estimate the total time yesterday that you spent sitting or lying down while reading during your leisure time. Include reading in bed but do not include time spent reading for paid work.

Hobbies

ST 8. Please estimate the total time yesterday that you spent sitting or lying down for hobbies. For example, doing art, craft or cross words.

Sitting/lying for other purposes

ST 9. We are interested in any other sitting or lying down that you may have done that you have not already told us. For example this could include socializing with friends or family including time on the telephone; eating meals; or listening to music.

Again thinking of yesterday, please estimate the total time that you spent sitting or lying down <u>NOT</u> including time that you have told us about in the previous answers.

minutes

hours	

Interviewer: if the respondent has difficulty, you can reassure them that their best estimate will be OK.

That's all the questions we have for you about the time you spent sitting or lying down yesterday. Thinking back on your answers, is there anything you would like to change?

Interviewer: This will give the participant an opportunity to confirm that they have given an accurate response to each question. Please change responses as required.

If the participant has reported sitting for over 16 hours in the day prompt them to consider their answers by saying 'I've got here that you spent sitting yesterday. Are there any times where you might have over-estimated or doubled up on reporting sitting time?'

IBEEP CRF V1 VERSION 10 OF 10

PAGE 41 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)					

The 3 Incontinence Questions (3IQ) Assessment Tool

The 3IQ is a patient questionnaire that helps your doctor distinguish urgency incontinence from stress incontinence. It should take no more than a couple of minutes. Complete the quiz and bring it to your next appointment.

- 1. During the last 3 months, have you leaked urine (even a small amount)? O Yes O No (if this response is marked, the 3IQ test is complete)
 - U tes U No (il ulis response is marked, ule sig test is complete)
- 2. During the last 3 months, did you leak urine (check all that apply):
 - When you were performing some physical activity, such as coughing, sneezing, lifting, or exercising?
 - When you had the urge or the feeling that you needed to empty your bladder, but you could not get to the toilet fast enough?
 - O Without physical activity and without sense of urgency?

3. During the last 3 months, did you leak urine most often (check only one):

- When you were performing some physical activity, such as coughing, sneezing, lifting, or exercising?
- When you had the urge or the feeling that you needed to empty your bladder, but you could not get to the toilet fast enough?
- O Without physical activity and without a sense of urgency?
- O About equally as often with physical activity as with a sense of urgency?

Definitions of type of urinary incontinence are based on responses to question 3.

Response to Question 3	Type of Incontinence
Most often with physical activity	Stress only or stress predominant
Most often with the urge to empty the bladder	Urgency only or urgency predominant
Without physical activity or sense of urgency	Other cause only or other cause predominant
About equally with physical activity and sense of urgency	Mixed

IBEEP CRF V1 VERSION 10 OF 10

PAGE 42 OF 47

INVESTIGATING BRONCHIECTASIS – EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID	INITIALS	DATE//	visir	

Understanding the impact of your illness and treatments on your everyday life can help your doctor monitor your health and adjust your treatments. For this reason, we have developed a quality of life questionnaire specifically for people who have bronchiectasis. Thank you for your willingness to complete this questionnaire.

Instructions: The following questions are about the current state of your health, as you perceive it. This information will allow us to better understand how you feel in your everyday life.

> Please answer all the questions. There are no right or wrong answers! If you are not sure how to answer, choose the response that seems closest to your situation.

F. What is the highest level of education you have achieved? Year 11 or below

- Year 12
- Advanced Diploma and Diploma
- Certificate III/IV
- Bachelor Degree
- Graduate Diploma and Graduate Certificate
- Postgraduate Degree
- G. Which of the following best describes your current employment or study status?
 - Studying outside the home
 - Studying by distance education
 - Seeking work
 - Working full-time or part-time (either outside the home or at a home-based business)
 - Domestic duties
 - Not studying or working due to my health
 - Not working for other reasons/Retired

Continue to Next Page

IBEEP CRF V1 VERSION 10 OF 10

PAGE 43 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
			1000	
D	INITIALS	DATE//	VISII	

	ļ
	. R
1 ,0.	

QUALITY OF LIFE QUESTIONNAIRE - BRONCHIECTASIS

Section I. Quality of Life Please tick the box indicating	your answ	er.		
During the past week, to what extent have you had difficulty:	A lot of difficulty	Moderate difficulty	A little difficulty	No difficulty
1. Performing vigorous activities, such as gardening or exercising				
2. Walking as fast as others (family, friends, etc.)				
3. Carrying heavy things, such as books, groceries, or shopping bags				
4. Climbing one flight of stairs				
During the past week, indicate how often:	Always	Often	Sometimes	Never
5. You felt well				
6. You felt tired				
7. You felt anxious				
8. You felt energetic				
9. You felt exhausted				
10. You felt sad				
11. You felt depressed				

Are you currently on any treatments (such as oral or inhaled medications, a PEP, Flutter[®] or Acapella[®] device, chest physiotherapy, or Vest) for bronchiectasis?

□ No (Go to Question 15 on the next page) Yes Yes

Please circle the number indicating your answer. Please choose only one answer for each question.

12. To what extent do your treatments for bronchiectasis make your daily life more difficult?

- 1. Not at all 2. A little
- 3. Moderately 4. A lot

13. How much time do you currently spend each day on your treatments for bronchiectasis?

- A lot
 A moderate amount
 A little
 Almost none

14. How difficult is it for you to fit in your treatments for bronchiectasis each day?

- 1. Not at all
- 2. A little 3. Moderately
- 4. Very

Continue to Next Page

IBEEP CRF V1 VERSION 10 OF 10

PAGE 44 OF 47

INVESTIGATING BRONCHIECTASIS – EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEW CASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	Visiī	

QUALITY OF LIFE QUESTIONNAIRE - BRONCHIECTASIS

Please circle the number indicating your answer. Please choose only one answer for each question.

15. How do you think your health is now?

- 1. Excellent 2. Good
- 3. Fair
- 4. Poor

Please tick a box to indicate your answer.

Thinking about your health during the past week, indicate the extent to which each sentence is true for you.

extent to which each sentence is true for you.	Completely true	Mostly	A little true	Not at all true	
16. I have to limit vigorous activities, such as walking or exercising					
17. I have to stay at home more than I want to					
18. I am worried about being exposed to others who are sick					Doesn't apply
 It is difficult to be intimate with a partner (kissing, hugging, sexual activity) 					
20. I lead a normal life					
21. I am concerned that my health will get worse					
22. I think my coughing bothers others					
23. I often feel lonely					
24. I feel healthy					
 It is difficult to make plans for the future (holidays, attending family events, etc.) 					
26. I feel embarrassed when I am coughing					

Please circle the number or tick the box indicating your answer.

During the past week:

- 27. To what extent did you have trouble keeping up with your job, housework, or other daily activities?
 1. You have had no trouble keeping up
 2. You have managed to keep up but it's been difficult

 - 3. You have been behind
 - 4. You have not been able to do these activities at all

	Always	Often	Sometimes	Never
 How often does having bronchiectasis get in the way of meeting your work, household, family, or personal goals? 				
	Con	tinue to	Next Pag	e

IBEEP CRF V1 VERSION 10 OF 10

PAGE 45 OF 47

INVESTIGATING BRONCHECTASIS - EVALUATING PHENOTYPES (IBEEP)				
THE UNIVERSITY OF NEWCASTLE HUNTER NEW ENGLAND AREA HEALTH SERVICE				
ID		DATE//	visir	

QUALITY OF LIFE QUESTIONNAIRE - BRONCHIECTASIS

Section II. Respiratory Symptoms

Please tick the box indicating your answer.

Indicate how you have been feeling	Indicate how you have been feeling during the past week:			A moderate amount	A little	Not at all
29. Have you felt congestion in your che	st?					
30. Have you been coughing during the o	lay?					
31. Have you had to cough up mucus?						
32. Has your sputum been mostly:	Clear Brownish to dark	Clear	to yellow n with traces	of blood	□ Yellowis □ Don't kno	h-green ow
How often during the past week:			Always	Often	Sometimes	Never
33. Have you had shortness of breath with housework or gardening?	h greater activity, such as					
34. Have you been wheezing?						
35. Have you had chest pain?			_		_	
			U		<u> </u>	-
36. Have you had shortness of breath wh	en talking?					

Please make sure you have answered all the questions.

THANK YOU FOR YOUR COOPERATION!

IBEEP CRF V1 VERSION 10 OF 10

PAGE 46 OF 47

IN TH	VESTIGATING BRONCH	ECTASIS – EVALUATING PHE CASTLE HUNTER NEW	NOTYPES (IBEEP)) A HEALTH SER	VICE		
				DATE	_//	visir	
Co	Common cold questionnaire (<u>complete only if there is a suspected virus)</u>						
su	BJECT No:		_Date:		INITIALS:		
In	the past two da	ays have you expe	rienced an	y of the fo	ollowing:		
				NONE	MILD	MODERATE	SEVERE
Α	General Sym 4. Fevers	ptoms:					
	 Chills Muscle p 	ains					
в.	Nasal Symp 4. Watery e	toms: eyes					
	5. Runny n	ose					
	6. Sneezin	g					
c.	Throat Symp 2. Sore thr	ptoms: pat					
E.	Chest Symp 3. Cough	toms:					
	4. Chest pa	ain					
E.	Photophobi	a:					
A probable viral infection is where there are moderate symptoms noted in at least two of the above							
four categories or mild symptoms noted in three or more categories.							
•	A possible vir	al infection is wher	e <u>mild sym</u>	iptoms ar	e noted in <u>one</u>	e category plus a	a cough.
	Probable Vir	al: Yes	N	•			
	Possible Vira	al: Yes	N	0			
Inf All PC	ected Controls other subjects	must have a prob must have none o ONSE PLEASE R	able or pos If the symp E - BOOK F	sible infe toms liste OR FOU	ction ed with the exc IR WEEKS TII	ception of cough ME	- IF RETURN A

IBEEP CRF V1 VERSION 10 OF 10

PAGE 47 OF 47

APPENDIX XI: PHYSICAL ACTIVITY DIARY

Participant logbook

Participant ID:	
ID number Actigraph:	
ID number activPAL:	
Start date:	/ /
End date:	/ /

If you have any questi	ons about this diary, please contact:
Name:	Tel:
email:	

How to wear your activity monitors

Activity monitor around the waist (Actigraph monitor)

The red activity monitor that is attached to the belt can be worn either above or below clothing. It is not necessary for this monitor to make contact with the skin. However, the monitor must be held snugly against the body to collect optimal data. Some people find it helpful to loop the belt through the belt loops of trousers to keep it in place. The elastic runs through the back of the device, this side should be against your body/clothing, with the 'front' facing out and black button facing up. Please wear the monitor on your _____hip and keep the placement consistent over the fourteen days. See picture for an example of how to put the belt on.

If you are having problems with the monitors, the instructions below will help you further:

- The belt doesn't stay in position:
 - It may help if you tighten the belt
- The monitor fell in the toilet/water:
 - Please take the monitor out of the water as quickly as possible and contact one of our staff
- Your skin shows a rash or becomes very itchy:
 - Try wearing the belt over clothing.

How to wash the belt

If you need to wash the belt of a monitor, **remove the monitor** before hand-washing the belt in warm soapy water. Hang them out to dry completely. Reassemble and wear the monitor again ASAP. Do NOT machine wash or dry or iron them.

1

Activity monitor on the thigh (AcitvPAL monitor)

HMRI staff will apply the thigh monitor at your study appointment. Please check your monitor every day as per the following:

- Check the skin around the dressing every day. Look for signs of skin reaction: redness, itchiness, irritation or discomfort. If there is a reaction, remove the white dressing and reattach the monitor to your thigh away from the reaction. (See How to reapply your activPAL monitor).
- Check the stickiness of your white dressing every day. If the dressing starts to peel off, remove the dressing and reattach the monitor to your thigh with a new white dressing (See How to reapply your activPAL monitor)
- Remove the white dressing and reattach the monitor with a fresh dressing after 3-4 days if you have not already done this because of stickiness or skin reaction (See How to reapply your activPAL monitor)
- 4. If a skin reaction does not subside and you cannot tolerate the monitor, please remove it and contact HMRI (use the phone number on the front page). Please record this in this logbook.
- If you accidently drop the monitor in water please dry it as quickly as possible and contact HMRI (use the phone number on the front page).

How to reapply your activPAL monitor

- 1. Sit down. This makes sure the skin on your thigh is stretched.
- Gently peel the white dressing off your skin. It will be more comfortable if you peel in the same direction as the hair growth.

3. Remove the wrapped monitor from the white dressing and throw out the white dressing. Please DO NOT remove the clear cover on from the monitor.

- 4. Get a fresh 8x10cm piece of white dressing
- 5. Dry your thigh completely

- Place the monitor on the *front of your thigh* with the *rounded edge pointing* towards your hip. Place it on away from the skin you have just removed it from.

7. Peel the paper off the fresh white dressing

 Stick the monitor to your thigh using the fresh white dressing. Try to avoid any creases in the dressing.

5

For a reliable measurement, we ask you to wear the two monitors every day and every night for 14 days (even when you are sleeping). The waist monitor is not waterproof and must be taken off when showering, bathing or swimming. The thigh monitor is waterproof if kept in the clear waterproof cover; however you may choose to replace the white dressing after getting it wet (See **How to reapply your thigh monitor**). Please record the times you did not wear the monitors in this logbook. Store the monitor in a dry, cool, safe place while you are not wearing it

How to complete your activity logbook

Please complete this logbook every day for 14 consecutive days starting with tomorrow.

- General information about your day: date, day of the week, the time that you woke up in the morning, and the time you went to bed that night.
- Any time you did not wear your monitor/s during the day, for example to go swimming or take a shower.
- Anything else you want to tell us about your day did anything unusual happen during the day?

6

DAY 1

Date:									
() () () () () () () () () () () () () (Time you woke up Time you went to bed		:	AM/P	м			
	2			:	AM/P	м			
Were there any p O No	oints in the d	lay that you to	ok the wa	ist monitor	off?				
$O Yes \to please f$	tell us when	you did not we	ear the wa	ist monitor					
Time taken off	:	AM/PM	Time pu	t on again	:	AM/PM			
Reason not worn:	:								
Time taken off	:	AM/PM	Time pu	t on again	:	AM/PM			
Reason not worn:	:								
Were there any p O No O Yes \rightarrow please t	oints in the d	lay that you to	ok the thi ear the thi	gh monitor gh monitor	off?				
Time taken off	:	AM/PM	Time pu	t on again	:	AM/PM			
Reason not worn:	:								
Time taken off	:	AM/PM	Time pu	t on again	:	AM/PM			
Reason not worn:	:								
Any nap?	_start nap t	ime:		finish nap t	ime:				
Is there any other	r information	you would like	e to tell us	about your	activities to	day?			

DAY 14

Date:											
9 3	Time you wo ł	e up	:	AM/PM							
6.	Time you wer	t to bed	:	AM/PM							
Were there any points in the day that you took the waist monitor off? O No O Yes \rightarrow please tell us when you did not wear the waist monitor											
Time taken off	AM/PM	Time put on ag	ain	:	AM/PM						
Reason not worn:											
Time taken off	: AM/PM	Time put on ag	ain	:	AM/PM						
Reason not worn:											
Were there any points in the day that you took the thigh monitor off? O No											
Time taken off	: AM/PM	Time put on ac	ain	:	AM/PM						
Peason not wom:		·····									
Time taken off	: AM/PM	Time put on ag	ain	:	AM/PM						
Reason not worn:											
Any nap?start nap time:finish nap time:											
is there any other inform	ation you would like	e to tell us about y	your activit	ies today?							

19

You have now completed this logbook. Please hand it over to us the next time we visit you.

Thank you very much

we appreciate your time and effort

Acknowledgements and thanks to Paul Gardiner and Geeske Peeters from University of Queensland for their assistance with this log book.